Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔBCD có
CA là đường trung tuyến
CA=BD/2
Do đó: ΔBCD vuông tại C
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
=>BC=DE
b: Xét ΔABD vuông tại A có AB=AD
nên ΔABD vuông cân tại A
=>\(\widehat{ABD}=\widehat{ADB}=45^0\)
Xét ΔAEC vuông tại A có AE=AC
nên ΔAEC vuông cân tại A
=>\(\widehat{AEC}=\widehat{ACE}=45^0\)
Ta có: \(\widehat{ABD}=\widehat{AEC}\left(=45^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên BD//CE
a: Xét ΔABC vuông tại A và ΔADC vuông tại A có
AC chung
AB=AD
Do đó: ΔABC=ΔADC
Suy ra: BC=DC
hay ΔBCD cân tại C
a: BC=căn 8^2+6^2=10cm
b: Xét ΔCBD có
CA vừa là đường cao, vừa là trung tuyến
=>ΔCBD cân tại C
=>CB=CD
Xét ΔCDE và ΔCBE có
CD=CB
góc DCE=góc BCE
CE chung
=>ΔCDE=ΔCBE
c: ΔCBD có CB=CD nên ΔCBD cân tại C
B A D C
Ta có: ∠BAC + ∠DAC = 180° ( kề bù )
mà ∠BAC = 90° (gt)
⇒ ∠DAC = 180° - 90° = 90°
⇒ ∠BAC = ∠DAC
Xét ∆ABC và ∆ADC có: AB = AC (gt) ; ∠BAC = ∠DAC (cmt) ; AC chung
⇒ ∆ABC = ∆ADC ( c_g_c)
⇒ BC = DC ( 2 cạnh tương ứng )
⇒ ∆CBD cân tại C ( theo dhnb)
Chú thích:
gt: giả thiết
theo dhnb: dấu hiệu nhận biết