Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác QMC và tam giác NMB có:
BM=CN(giả thiết)
NM=NQ(GT)
BMN=QMC(đối đỉnh)
\(\Rightarrow\)2 tam giác = nhau
\(\Rightarrow\)QC=BN(2 cạnh tương ứng)
+)Ta có:N trung điểm AC
M trung điểm BC
Nên áp dụng bài toàn phụ về đường trung bình(ko biết thì nhớ search)
\(\Rightarrow\)MN//AB,MN=AB/2
\(\Rightarrow\)MQ//AB,MQ=AB/2(MN=MQ)
\(\Rightarrow\)MQ//AB,MQ=AP(AP=AB/2)
Ta có :MQ//AP<MQ=AP
Nên áp dụng tính chất đoạn chắn (tự search dùm nếu ko bít)
\(\Rightarrow\)AM=PQ.
(Kết luận thì tự đi mà viết mỏi tay VCL!!!)
Để phòng tránh copy ,vui lòng k cho vũ văn đạt đầu tiên
Tam giác ABC có cạnh huyền PC là 1 cạnh của tam giác PQC
Xét tam giác QMC và tam giác BMN có :
BM=MC
Góc BMN=góc QMC
QM=MN
=>Tam giác BMN=tam giác QMC
=>BN=QC(hai góc tương ứng)
MÌNH CHỈ GIẢI ĐC ĐẾN ĐÂY THÔI
30. Gọi G là trọng tâm của tam giác ABC. Trên tia AG lấy điểm G’ sao cho G là trung điểm của AG’
a) So sánh các cạnh của tam giác BGG’ với các đường trung tuyến của tam giác ABC
b) So sánh các đường trung tuyến của tam giác BGG’ với các cạnh của tam giác ABC.
Hướng dẫn:
a) So sánh các cạnh của ∆BGG’ với các đường trung tuyến của ∆ABC BG cắt AC tại N
CG cắt AB tại E
G là trọng tâm của ∆ABC
=> GA = AM
Mà GA = GG’ ( G là trung điểm của AG ‘)
GG’ = AM
Vì G là trọng tâm của ∆ABC => GB = BN
Mặt khác : GM = AG ( G là trọng tâm )
AG = GG’ (gt)
GM = GG’
M là trung điểm GG’
Do đó ∆GMC = ∆G’MB vì :
GM = MG’
MB = MC
=> BG' = CG
mà CG = CE (G là trọng tâm ∆ABC)
=> BG' = CE
Vậy mỗi cạnh của ∆BGG' bằng đường trung tuyến của ∆ABC
b) So sánh các đường trung tuyến của ∆BGG' với cạnh ∆ABC
ta có: BM là đường trung tuyến ∆BGG'
mà M là trung điểm của BC nên BM = BC
Vì IG = BG (I là trung điểm BG)
GN = BG ( G là trọng tâm)
=> IG = GN
Do đó ∆IGG' = ∆NGA (cgc) => IG' = AN => IG' =
- Gọi K là trung điểm BG => GK là trung tuyến ∆BGG'
Vì GE = GC (G là trọng tâm ∆ABC)
=> GE = BG
mà K là trung điểm BG' => KG' = EG
Vì ∆GMC = ∆G'BM (chứng minh trên)
=> (lại góc sole trong)
=> CE // BG' => (đồng vị)
Do đó ∆AGE = ∆GG'K (cgc) => AE = GK
mà AE = AB nên GK = AB
Vậy mỗi đường trung tuyến ∆BGG' bằng một nửa cạnh của tam giác ABC song song với nó
Xem thêm tại: http://loigiaihay.com/bai-30-trang-67-sgk-toan-lop-7-tap-2-c42a5626.html#ixzz4l0rlUT9x
KHÔNG THẤY HÌNH THÌ VÀO THỐNG KÊ HỎI ĐÁP NHA
A) VÌ \(BH\perp AD\Rightarrow\widehat{BHA}=90^o\)
\(CI\perp AD\Rightarrow\widehat{CID}=90^o\)
\(\Rightarrow\widehat{BHA}=\widehat{CID}=90^o\)hay \(\widehat{BHI}=\widehat{CIH}=90^o\)
HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU
=> BH // CI (ĐPCM)
B)
XÉT \(\Delta ABC\)VUÔNG TẠI A
\(\Rightarrow\widehat{A}=90^o\)hay \(\widehat{BAH}+\widehat{HAC}=90^o\left(1\right)\)
XÉT \(\Delta AHB\)VUÔNG TẠI H
\(\Rightarrow\widehat{H}=90^o\)hay \(\widehat{BAH}+\widehat{ABH}=180^o-90^o=90^o\left(2\right)\)
từ (1) và (2) \(\Rightarrow\widehat{HAC}=\widehat{ABH}\)
XÉT \(\Delta ABH\)VÀ\(\Delta CAI\)CÓ
\(\widehat{H}=\widehat{I}=90^o\)
AB = AC (gt)
\(\widehat{ABH}=\widehat{IAC}\)(CMT)
=>\(\Delta ABH\)=\(\Delta CAI\)(C-G-C)
=> BH = AI ( HAI CẠNH TƯƠNG ỨNG )