K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2023

P = (a + b + c)3 - 4(a3 + b3 + c3) - 12abc

= (a + b + c)3 - 4(a3 + b3 + c3 + 3abc) 

= (a + b + c)3 - 8c3 - 4(a3 + b3 - c3 + 3abc) 

= (a + b + c)3 - (2c)3 - 4(a3 + b3 - c3 + 3abc) 

Có (a + b + c)3 - (2c)3 

= (a + b - c)[(a + b + c)2 + (a + b + c).2c + 4c2]

= (a + b - c)(a2 + b2 + c2 + 2ab + 2bc + 2ca + 2ac + 2bc + 2c2 + 4c2)

= (a + b - c)(a2 + b2 + 7c2 + 4bc + 4ac + 2ba)

Lại có a3 + b3 - c3 + 3abc

 = (a + b)3 - c3 - 3ab(a + b) + 3abc

= (a + b - c)[(a + b)2 + (a + b)c + c2 - 3ab]

= (a + b - c)(a2 + b2 + c2 + ac + bc - ab) 

Khi đó P = (a + b - c)(a2 + b2 + 7c2 + 4bc + 4ac + 2ba) - 4(a + b - c)(a2 + b2 + c2 + ac + bc - ab) 

= (a + b - c)(-3a2 - 3b2 + 3c2 + 6ba)

= 3(a + b - c)(- a2 - b2 + 2ab + c2)

= 3(a + b - c)[c2 - (a - b)2]

= 3(a + b - c)(a + c - b)(c - a + b) 

Nếu P < 0 thì  3(a + b - c)(a + c - b)(c - a + b)  < 0

<=>  (a + b - c)(a + c - b)(c + b - a) < 0

=> Có ít nhất một hạng tử trái dấu với 2 hạng tử còn lại

Với a,b,c > 0

Giả sử \(\left\{{}\begin{matrix}a+b-c< 0\\a+c-b>0\\b+c-a>0\end{matrix}\right.\) => a;b;c không là 3 cạnh tam giác 

hoặc \(\left\{{}\begin{matrix}a+b-c>0\\b+c-a< 0\\a+c-b< 0\end{matrix}\right.\) cũng tương tự

Vậy a,b,c không là 3 cạnh tam giác 

30 tháng 1 2023

Không kết luận được bất cứ điều gì nếu không có thêm điều kiện a;b;c là các số dương

15 tháng 10 2021

1.

\(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0\\ \Leftrightarrow a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2< 0\\ \Leftrightarrow\left(a^4+b^4+c^4+2a^2b^2-2b^2c^2-2c^2a^2\right)-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2\right)^2-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)< 0\\ \Leftrightarrow\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]< 0\\ \Leftrightarrow\left(a-b+c\right)\left(a-b-c\right)\left(a+b-c\right)\left(a+b+c\right)< 0\left(1\right)\)

Vì a,b,c là độ dài 3 cạnh của 1 tg nên \(\left\{{}\begin{matrix}a+c>b\\a-b< c\\a+b>c\\a+b+c>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b+c>0\\a-b-c< 0\\a+b-c>0\\a+b+c>0\end{matrix}\right.\)

Do đó \(\left(1\right)\) luôn đúng (do 3 dương nhân 1 âm ra âm)

Từ đó ta được đpcm

 

 

 

15 tháng 10 2021

uầy e đọc chả hỉu j lun :(

19 tháng 11 2018

-12abc hay +12abc ?

19 tháng 12 2020

Bài này mình làm một lần ở trường rồi nhưng không có điện thoại chụp được:((

Ta có: \(\dfrac{a^3}{\left(a-b\right)\left(a-c\right)}+\dfrac{b^3}{\left(b-a\right)\left(b-c\right)}+\dfrac{c^3}{\left(c-a\right)\left(c-b\right)}=\dfrac{a^3\left(c-b\right)+b^3\left(a-c\right)-c^3\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}\)\(=\dfrac{a^3\left(c-b\right)+b^3a-b^3c-c^3a+c^3b}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}=\dfrac{a^3\left(c-b\right)-a\left(c^3-b^3\right)+bc\left(c^2-b^2\right)}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}=\dfrac{a^3\left(c-b\right)-a\left(c-b\right)\left(a^2+bc+b^2\right)+bc\left(c-b\right)\left(c+b\right)}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}\)\(=\dfrac{\left(c-b\right)\left(a^3-ac^2-abc-ab^2+bc^2+b^2c\right)}{\left(a-b\right)\left(c-b\right)\left(a-c\right)}=\dfrac{\left(c-b\right)\left[a\left(a^2-b^2\right)-c^2\left(a-b\right)-bc\left(a-b\right)\right]}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}\)\(=\dfrac{\left(c-b\right)\left[a\left(a-b\right)\left(a+b\right)-c\left(a-b\right)-bc\left(a-b\right)\right]}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}=\dfrac{\left(c-b\right)\left(a-b\right)\left(a^2+ab-c-bc\right)}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}\)

\(\dfrac{\left(c-b\right)\left(a-b\right)\left[a^2-c^2+ab-bc\right]}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}=\dfrac{\left(c-b\right)\left(a-b\right)\left[\left(a-c\right)\left(a+c\right)+b\left(a-c\right)\right]}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}=\dfrac{\left(c-b\right)\left(a-b\right)\left(a-c\right)\left(a+b+c\right)}{\left(a-b\right)\left(c-b\right)\left(a-c\right)}\)\(=a+b+c\)

Vì a, b, c là các số nguyên

=> a+b+c là các số nguyên

=> Đpcm.

Đấy mình làm chi tiết tiền tiệt lắm luôn, không hiểu thì mình chịu rồi, trời lạnh mà đánh máy nhiều thế này buốt tay lắm luôn:vv

9 tháng 4 2019

Đặt \(a+b=m;a-b=n\)

Ta có:\(\Rightarrow\hept{\begin{cases}\left(a+b\right)^2=m^2\\\left(a-b\right)^2=n^2\end{cases}}\Rightarrow\hept{\begin{cases}a^2+2ab+b^2=m^2\\a^2-2ab+b^2=n^2\end{cases}}\Rightarrow\left(a^2+2ab+b^2\right)-\left(a^2-2ab+b^2\right)=m^2-n^2\)

\(\Rightarrow4ab=m^2-n^2\)

Mặt khác :\(a^3+b^3=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]=m\left(n^2+\frac{m^2+n^2}{4}\right)\)

Ta lại có:\(A=\left(a+b+c\right)^3-4\left(a^3+b^3+c^3\right)-12abc\)

\(=\left(m+c\right)^3-4\left[m\left(n^2+\frac{m^2-n^2}{4}\right)+c^3\right]-12abc\)

\(=m^3+3m^2c+3c^2m+c^3-4\left(mn^2+\frac{m^2-n^2}{4}+c^3\right)-12abc\)

\(=m^3+3m^2c+3c^2m+c^3-4\left(\frac{4mn^2+m^3-mn^2}{4}+c^3\right)-3c\left(m^2-n^2\right)\)

\(=m^3+3m^2c+3c^2m+c^3-4\cdot\frac{m^3+3mn^2}{4}-4c^3-3cm^2+3cn^2\)

\(=m^3+3cm^2+3c^2m+c^3-m^3-3mn^2-4c^3-3cm^2+3cn^2\)

\(=\left(m^3-m^3\right)+\left(3cm^2-3cm^2\right)+3c^2m+\left(c^3-4c^3\right)+3cn^2-3mn^2\)

\(=3c^2m-3c^3+3cn^2-3mn^2\)

\(=3\left(c^2m-c^3+cn^2-mn^2\right)\)

\(=3\left[c^2\left(m-c\right)+n^2\left(c-m\right)\right]\)

\(=3\left(c^2-n^2\right)\left(m-c\right)\)

\(=3\left(c-n\right)\left(c+n\right)\left(m-c\right)\)

\(=3\left(c-a+b\right)\left(c+a-b\right)\left(a+b-c\right)\)

P/S:Bài giải dài.có j sai thông cảm cho e nha!