Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C K I A B M H G
a,Xét \(\Delta MHB\)và \(\Delta MKC\):
\(\widehat{KMC}=\widehat{BMH}\)( đối đỉnh )
\(MK=MH\)( giả thiết )
\(MC=MB\)( giả thiết )
\(\Rightarrow\Delta MHB=\Delta MKC\left(c.g.c\right)\)
\(\widehat{\Rightarrow CKM}=\widehat{MHB}=90^0\)
b, Tứ giác AHCK có :
\(\widehat{A}=\widehat{H}=\widehat{K}=90^0\)
\(\Rightarrow\)Tứ giác AHKC là hình chữ nhật .
\(\Rightarrow\)AC = KH
c , Ta có :
\(\hept{\begin{cases}CK=HB\\CK=AH\end{cases}\Rightarrow HB=AH}\)
\(\Rightarrow\)H là trung điểm AB
\(\Rightarrow\)CH là đường trung tuyến \(\Delta\)ABC
Mà CH cắt AM tại G
\(\Rightarrow\)G là Trọng tâm của \(\Delta\)ABC
\(\Rightarrow\)(BI) BG là đường trung tuyến còn lại của \(\Delta\)ABC
\(\Rightarrow\)IA = IC ( đpcm )
a1, Xét tam giác AMB và tam giác AMC có :
AM chung
B=C(tam giác ABC cân )
AB=AC9tam giác ABC cân)
Do đó tam giác AMB=tam giác AMC(c.g.c)
a2, Vì tam giác AMB=tam giác AMC( cmt)
=>Bam=Cam ( 2 góc tương ứng)
=>AM là tia p/g góc A
Mình ms làm xong câu a thôi đợi mình nghĩ nót câu kia đã. bạn tick nha mình đảm bảo đúng
Làm xong nhớ tick cho mình đấy nhé !
a) Xét ∆ABM và ∆ACM, ta có :
AB = AC (vì ∆ABC cân tại A)
AM là cạnh chung
MB = MC (vì M là trung điểm của BC)
ð ∆ABM = ∆ACM (c.c.c)
b) Xét ∆AMH và ∆AMK, ta có :
Góc HAM = góc KAM
AM là cạnh chung
Góc AHM = góc AKM
ð ∆AMH = ∆AMK
ð MH = MK (g.c.g)
c) Trong ∆AJI, ta có :
Góc AJI = (180° - góc A) : 2 (1)
Trong ∆ABC, ta có :
Góc abc = (180° - góc A) : 2 (2)
Từ (1) và (2) => góc AJI = góc ABC
Mà 2 góc này ở vị trí đồng vị
ð IJ // BC