\(1+\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+\(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2018

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}< 2\left(đpcm\right)\)

So sánh : A = \(\frac{1}{2^2}\)+ \(\frac{1}{3^2}\)+ \(\frac{1}{4^2}\)+ ..............+ \(\frac{1}{2018^2}\)với    B = \(\frac{75}{100}\)Ta có  \(\frac{1}{3^2}\)< \(\frac{1}{2.3}\)                   \(\frac{1}{4^2}\)< \(\frac{1}{3.4}\)               \(\frac{1}{2018^2}\)< \(\frac{1}{2017.2018}\)Suy ra : A < \(\frac{1}{2^2}\)+ \(\frac{1}{2.3}\)+ \(\frac{1}{3.4}\)+............................+ \(\frac{1}{2017.2018}\)Gọi biểu...
Đọc tiếp

So sánh : A = \(\frac{1}{2^2}\)\(\frac{1}{3^2}\)\(\frac{1}{4^2}\)+ ..............+ \(\frac{1}{2018^2}\)với    B = \(\frac{75}{100}\)

Ta có  \(\frac{1}{3^2}\)\(\frac{1}{2.3}\)                   \(\frac{1}{4^2}\)\(\frac{1}{3.4}\)               \(\frac{1}{2018^2}\)\(\frac{1}{2017.2018}\)

Suy ra : A < \(\frac{1}{2^2}\)\(\frac{1}{2.3}\)\(\frac{1}{3.4}\)+............................+ \(\frac{1}{2017.2018}\)

Gọi biểu thức \(\frac{1}{2.3}\)\(\frac{1}{3.4}\)+ ............... +  \(\frac{1}{2017.2018}\)là C 

\(\Rightarrow\)A < \(\frac{1}{2^2}\) +  C = \(\frac{1}{4}\) +  \(\frac{1}{2}\)-  \(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{4}\)+ ...................+ \(\frac{1}{2017}\)-   \(\frac{1}{2018}\)=  \(\frac{1}{4}\)+  \(\frac{1}{2}\)-  \(\frac{1}{2018}\)

\(\Rightarrow\)A < ( \(\frac{1}{4}\)+  \(\frac{1}{2}\))    -   \(\frac{1}{2018}\) = \(\frac{3}{4}\) - \(\frac{1}{2018}\)\(\frac{3}{4}\)=  \(\frac{75}{100}\)

\(\Rightarrow\)A < B =  \(\frac{75}{100}\)( đpcm)

 

0
29 tháng 8 2020

a) Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\) ; \(\frac{1}{3^2}< \frac{1}{2.3}\) ; \(\frac{1}{4^2}< \frac{1}{3.4}\) ; ... ; \(\frac{1}{2010^2}< \frac{1}{2009.2010}\)

=> \(Vt< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(=1-\frac{1}{2010}< 1\)

26 tháng 4 2018

\(a)\) Ta có : 

\(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

\(\frac{1}{4^2}< \frac{1}{3.4}\)

\(............\)

\(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow\)\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\Rightarrow\)\(A< 1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow\)\(A< 1+1-\frac{1}{100}\)

\(\Rightarrow\)\(A< 2-\frac{1}{100}< 2\)

\(\Rightarrow\)\(A< 2\) ( đpcm ) 

Vậy \(A< 2\)

Chúc bạn học tốt ~ 

26 tháng 4 2018

Cảm ơn bạn nhiều lắm

4 tháng 4 2018

\(a)\) Ta có : 

\(\frac{1}{100}A=\frac{100^{2009}+1}{100^{2009}+100}=\frac{100^{2009}+100}{100^{2009}+100}-\frac{99}{100^{2009}+100}=1-\frac{99}{100^{2009}+100}\)

\(\frac{1}{100}B=\frac{100^{2010}+1}{100^{2010}+100}=\frac{100^{2010}+100}{100^{2010}+100}-\frac{99}{100^{2010}+100}=1-\frac{99}{100^{2010}+100}\)

Vì \(\frac{99}{100^{2009}+100}>\frac{99}{100^{2010}+100}\) nên \(1-\frac{99}{100^{2009}+100}< 1-\frac{99}{100^{2010}+100}\)

Do đó : 

\(\frac{1}{100}A< \frac{1}{100}B\)\(\Rightarrow\)\(A< B\)

Vậy \(A< B\)

Chúc bạn học tốt ~ 

17 tháng 4 2018

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+..............+\frac{1}{99^2}\)

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+................+\frac{1}{98.99}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+............+\frac{1}{98}-\frac{1}{99}\)

\(=1-\frac{1}{99}=\frac{98}{99}< 1\)

\(A>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.............+\frac{1}{99.100}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...............+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)

Vậy \(\frac{49}{100}< A< 1\)