Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A+B=x2+1+3-4x=0
<=> x2-4x+4=0 <=> (x-2)2=0
=> x=2
b) \(\frac{1}{A+B}=\frac{1}{\left(x-2\right)^2}\)
Để Biểu thức có giá trị nguyên => 1 phải chia hết cho (x-2)2 => (x-2)2=1 => x-2=-1 và x-2=1
=> x=1 và x=3
c) \(\frac{B}{A}=\frac{3-4x}{x^2+1}\)
Để biểu thức trên nguyên
=> 9x+5 chia hết cho 3x-1
=> 9x-3+8 chia hết cho 3x-1
Vì 9x-3 chia hết cho 3x-1
=> 8 chia hết cho 3x-1
=> 3x-1 thuộc Ư(8)
=> 3x-1 thuộc {1; -1; 2; -2; 4; -4; 8; -8}
=> 3x thuộc {2; 0; 3; -1; 5; -3; 9; -7}
=> x thuộc {2/3 ; 0 ; 1 ; -1/3 ; 5/3 ; -1 ; 3 ; -7/3}
9x + 5 = 3x-1
Chúng tôi đơn giản hóa phương trình để hình thành, đó là đơn giản để hiểu 9x + 5 = 3x-1 Chúng tôi di chuyển tất cả các điều khoản có chứa x sang bên trái và tất cả các điều khoản khác về bên phải. + 9x-3x = - 1-5 Chúng tôi đơn giản hóa việc trái và bên phải của phương trình. + 6x = -6 Chúng ta chia cả hai vế của phương trình 6 để có được x. x = -1
x-3=k^2
x=k^2+3
x+1-k=t^2
k^2+4-k=t^2
(2k-1)^2+15=4t^2
(2k-1-2t)(2k-1+2t)=-15=-1.15=-3*5
---giải phương trình nghiệm nguyên với k,t---
TH1. [2(k-t)-1][2(k+t)-1]=-1.15
2(k-t)-1=-1=> k=t
4t-1=15=>t=4 nghiệm (-4) loại luôn
với k=4=> x=19 thử lại B=căn (19+1-can(19-3))=can(20-4)=4 nhận
TH2. mà có bắt tìm hết đâu
x=19 ok rồi
ô hay vừa giải xong mà
x=k^2+3
với k là nghiệm nguyên của phương trình
k^2-k+4=t^2
bắt tìm hết hạy chỉ một
x=19 là một nghiệm
\(B=\frac{9x+1}{3x-2}=\frac{9x-6+7}{3x-2}=\frac{3\left(3x-2\right)+7}{3x-2}=3+\frac{7}{3x-2}\)
Để \(3+\frac{7}{3x-2}\) là số nguyên <=> \(\frac{7}{3x-2}\) là số nguyên
=> 3x - 2 là ước 7 => Ư(7) = { - 7; - 1; 1; 7 }
Ta có : 3x - 2 = - 7 <=> 3x = - 5 => \(x=-\frac{5}{3}\)
3x - 2 = - 1 <=> 3x = 1 => \(x=\frac{1}{3}\)
3x - 2 = 1 <=> 3x = 3 => x = 1
3x - 2 = 7 <=> 3x = 9 => x = 3
Vậy x = { \(-\frac{5}{3};\frac{1}{3};1;3\) } thì B có giá trị nguyên
ngu qua