Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có : 2x2 >= 0 với mọi x
=> -2x2 <= 0 với mọi x
=> -2x2 + 2003 <= 2003 với mọi x
dấu "=" xảy ra <=> x=0
vậy GTLN của A là 2003 tại x=0
a) ta có: x^2>=0
-2x^2<=0
-2x^2+2003 <=0+2003<2003
A<=2003
Dấu " = " xảy ra khi và chỉ khi: x=0
Vậy GTLN của A là 2003 tại x=0
a, 1, Vì |x - 2019| ≥ 0 ; (y - 1)2020 ≥ 0 => |x - 2019| + (y - 1)2020 ≥ 0 => |x - 2019| + (y - 1)2020 + (-2) ≥ (-2) => A ≥ -2
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-2019=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2019\\y=1\end{cases}}\)
Vậy GTNN A = -2 khi x = 2019 và y = 1
2, Ta có: |x - 3| = |3 - x|
Vì |x - 3| + |x + 4| ≥ |x - 3 + x + 4| = |1| = 1
=> C ≥ 1 - 5 => C ≥ -4
Dấu " = " xảy ra <=> (3 - x)(x + 4) ≥ 0
+) Th1: \(\hept{\begin{cases}3-x\ge0\\x+4\ge0\end{cases}\Rightarrow}\hept{\begin{cases}x\le3\\x\ge-4\end{cases}\Rightarrow}-4\le x\le3\)
+) Th2: \(\hept{\begin{cases}3-x\le0\\x+4\le0\end{cases}\Rightarrow}\hept{\begin{cases}x\ge3\\x\le-4\end{cases}}\)(Vô lý)
Vậy GTNN của C = -4 khi -4 ≤ x ≤ 3
b,
1, Vì |x2 - 25| ≥ 0 => 4|x2 - 25| ≥ 0 => 32 - 4|x2 - 25| ≤ 32 = 9
Dấu " = " xảy ra <=> x2 - 25 = 0 <=> x2 = 25 <=> x = 5 hoặc x = -5
Vậy GTLN B = 9 khi x = 5 hoặc x = -5
2, Đk: x ≠ 5
\(D=\frac{x-4}{x-5}=\frac{\left(x-5\right)+1}{x-5}=1+\frac{1}{x-5}\)
Để D mang giá trị lớn nhất <=> \(\frac{1}{x-5}\)mang giá trị lớn nhất <=> x - 5 mang giá trị nhỏ nhất <=> x - 5 = 1 <=> x = 6
=> \(D=1+1=2\)
Vậy GTLN của D = 2 khi x = 6
Đặt \(A=\frac{6}{\left|x-3\right|+2}\)
Dễ thấy \(A=\frac{6}{\left|x-3\right|+2}\le\frac{6}{0+2}=3\)
Vậy GTLN của A = 3 khi |x - 3| = 0
x - 3 = 0 => x = 3
Vậy Amax = 3 khi x = 3
TÌM X:
a) 2x - 3 = \(\frac{1}{2}\)
2x = \(\frac{1}{2}+3\)
2x = \(\frac{7}{2}\)
x = 2 : \(\frac{7}{2}\)
x = 2 . \(\frac{2}{7}\)
x = \(\frac{4}{7}\)
b) /x+1/ = 0.25
/x+1/ = \(\frac{1}{4}\)
\(\orbr{\begin{cases}x+1=\frac{1}{4}\\x+1=-\frac{1}{4}\end{cases}}\)
\(\orbr{\begin{cases}x=\frac{1}{4}-1\\x=-\frac{1}{4}-1\end{cases}}\)
\(\orbr{\begin{cases}x=-\frac{3}{4}\\x=-\frac{5}{4}\end{cases}}\)
c) 32 : 2x = 2
\(2x=32:2\)
\(2x=16\)
\(x=16:2\)
\(x=8\)
~GOOD STUDY~
a, \(A=3-\left|x-1\right|\)
Ta thấy \(\left|x-1\right|\ge0\Rightarrow3-\left|x-1\right|\le3\)
Suy ra \(A\le3\)
Khi đó giá trị lớn nhất của A là 3 khi và chỉ khi \(\left|x-1\right|=0\Rightarrow x-1=0\Rightarrow x=1\)
Vậy GTLV của A là 3 <=> x = 1
b, \(B=\left|x-100\right|+\left|x-2\right|\)
Ta thấy \(\left|x-100\right|+\left|x-2\right|=\left| x-100\right|+\left|2-x\right|\ge\left|x-100+2-x\right|=98\)
Dấu "=" xảy ra khi và chỉ khi \(\left(x-100\right).\left(2-x\right)\ge0\Rightarrow2< x< 100\)
Sau ra giá trị lớn nhất của A là 98 khi và chỉ khi 2 < x < 100
Vậy.....
A = 3 - | x - 1 |
Vì - | x - 1 | < hoặc bằng 0
=> 3 - | x - 1 | < hoặc bằng 3
=> A max = 3 khi x = 1