K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2023

Điều kiện để A xác định là:

\(m-1< 8\)

\(\Leftrightarrow m< 8+1\Leftrightarrow m< 9\) 

Để: \(A\backslash B=\varnothing\) 

\(\Leftrightarrow A\subset B\) \(\Rightarrow2\le m-1\)

\(\Leftrightarrow m\ge3\)

kết hợp với điều kiện:

\(\Rightarrow3\le m< 9\)

28 tháng 8 2023

chưa đi học hả

7 tháng 9 2019

Bàu này quá dễ cái này lớp 6 còn còn có trong chương trình :)

Cho hai tập khác rỗng : A = (m – 1; 4], B = (-2; 2m + 2), với m ∈ Rℝ. Giá trị m để A  ∩ B ⊂ (-1; 3) là:

Điều kiện để tồn tại tập hợp A, B là

{m−1<4−2<2m+2⇔{m<5m>−2⇔−2<m<5A∩B⊂(−1;3)⇔{m−1≥−12m+2≤3⇔{m≥0m≤12⇔0≤m≤12m-1<4-2<2m+2⇔m<5m>-2⇔-2<m<5A∩B⊂(-1;3)⇔m-1≥-12m+2≤3⇔m≥0m≤12⇔0≤m≤12

Kết hợp với điều kiện (*) ta có 0 ≤ m ≤ 1/2 là giá trị cần tìm.

Cách này là tôi tự làm trong 1 lần ở Viet Jack kiểu tham khảo chứ kcoppy mạng :)

>3.....@Chi

Điều kiện để tn tại tập hợp A, B 

\(\hept{\begin{cases}m-1>4\\-2< 2m+2\end{cases}}\Rightarrow\hept{\begin{cases}m< 5\\m>-2\end{cases}}\Leftrightarrow-2< m< 5\)

A ∩ B ⊂ (-1; 3) \(\Leftrightarrow\hept{\begin{cases}m-1\ge-1\\2m+2\le3\end{cases}}\Leftrightarrow\hept{\begin{cases}m\ge0\\m\le\frac{1}{2}\end{cases}}\Leftrightarrow0\le m\le\frac{1}{2}\)

{m1<42<2m+2{m<5m>22<m<5AB(1;3){m112m+23{m0m120m12m-1<4-2<2m+2⇔m<5m>-2⇔-2<m<5A∩B⊂(-1;3)⇔m-1≥-12m+2≤3⇔m≥0m≤12⇔0≤m≤12

Kết hợp với điều kiện (*) ta có 0 ≤ m ≤ 1/2 là giá trị cần tìm.

NV
8 tháng 9 2020

Để 2 tập khác rỗng thì: \(\left\{{}\begin{matrix}m-1< 4\\2m+2>-2\end{matrix}\right.\) \(\Rightarrow-2< m< 5\)

Để \(A\cap B\ne\varnothing\Leftrightarrow2m+2>m-1\Rightarrow m>-3\)

Vậy \(-2< m< 5\)

Để A là tập con của B thì m-1>=-2 và 4<=2m+2 và m-1<=4 và 2m+2>=-2

=>m>=-1 và 2m+2>=4 và m<=3 và m>=-2

=>m>=-1 và m>=1 và -2<=m<=3

=>m>=1 và -2<=m<=3

=>-2<=m<=1

20 tháng 12 2023

Để A ∪ B = A thì:

m - 5 < 2 và m + 1 ≥ 6

*) m - 5 < 2

⇔ m < 2 + 5

⇔ m < 7

*) m + 1 ≥ 6

⇔ m ≥ 6 - 1

⇔ m ≥ 5

Vậy 5 m < 7 thì A ∪ B = A

NV
16 tháng 9 2019

Để A và B có nghĩa \(\Rightarrow\left\{{}\begin{matrix}m-1< 4\\2m+2>-2\end{matrix}\right.\) \(\Rightarrow-2< m< 5\)

a/ \(m-1< 2m+2\Rightarrow m>-3\)

Kết hợp điều kiện \(\Rightarrow-2< m< 5\)

b/ \(\left\{{}\begin{matrix}m-1\le-2\\4< 2m+2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\le-1\\m>1\end{matrix}\right.\) \(\Rightarrow-1\le m< 1\)

20 tháng 5 2017

Đáp án: D

Điều kiện để tn tại tập hợp A, B

m - 1 < 4 - 2 < 2 m + 2 ⇔ m < 5 m > - 2 ⇔ - 2 < m < 5 A ∩ B ⊂ ( - 1 ; 3 ) ⇔ m - 1 ≥ - 1 2 m + 2 ≤ 3 ⇔ m ≥ 0 m ≤ 1 2 ⇔ 0 ≤ m ≤ 1 2

Kết hợp với điều kiện (*) ta 0 ≤ m ≤ 1/2 là giá trị cần tìm.