K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2017

pt <=> \(\left(x^2-2x.\frac{y}{2}+\frac{y^2}{4}\right)+\frac{3}{4}.\left(y^2-4y+4\right)+\left(z^2-2z+1\right)=0\)

\(\Leftrightarrow\left(x-\frac{y}{2}\right)^2+\frac{3}{4}.\left(y-2\right)^2+\left(z-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-\frac{y}{2}=0\\y-2=0\\z-1=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=1\\y=2\\z=1\end{cases}}\)

29 tháng 1 2017

P.An hở

25 tháng 1 2017

z=X=y=1

25 tháng 1 2017

x2 + y2 + z2 = xy + 3y + 2z - 4

<=> 4x2 + 4y2 + 4z2​ = 4xy + 12y + 8z - 16

<=> (4x2 - 4xy + y2) + (3y2 - 12y + 12) + (4z2 - 8z + 4) = 0

<=> (2x - y)2 + 3(y - 2)2 + (2z - 2)2 = 0

Dấu = xảy ra khi 

\(\hept{\begin{cases}2x-y=0\\y-2=0\\2z-2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\y=2\\z=1\end{cases}}\)

21 tháng 1 2017

x2 + y2 + z2 = xy + 3y + 2z - 4

\(\Leftrightarrow\)(x2 - xy + \(\frac{y^2}{4}\)) + (z2 - 2z + 1) + (\(\frac{3y^2}{4}\) - 3y + 3) = 0

\(\Leftrightarrow\) (x - \(\frac{y}{2}\))2 + (z - 1)2 + 3(\(\frac{y}{2}\) - 1)2 = 0

\(\Leftrightarrow\left\{\begin{matrix}x-\frac{y}{2}=0\\z-1=0\\\frac{y}{2}-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}x=1\\y=2\\z=1\end{matrix}\right.\)

21 tháng 1 2017

Thanks!

1 tháng 10 2016

xem lạiđề,có 2 lần x2 xuất hiện

4 tháng 3 2017

\(x^2+y^2+z^2-xy-3y-2z+4=0\)không có  thừ số x à.

(\(\left(x-\frac{y}{2}\right)^2+3\left(\frac{y}{2}-1\right)^2+\left(z-1\right)^2=0\)

y=2

14 tháng 3 2017

x^2+y^2+z^2-xy-3y-2z+4=0

x^2-xy+1/4y^2+3/4y^2-3y+3+z^2-2z+1=0

(x-1/2y)^2+3/4(y-2)^2+(z-1)^2=0

suy ra (x-1/2y)^2=0 (y-2)^2=0 (z-1)^2=0 

x=1/2y y=2 z=1

x=1,y=2,z=1