Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/3+2/15+2/35+...+2/n x (n+2)=322/323
=2/1.3+2.3.5+2/5.7+...+2/n x(n+2)=322/323
= n+2 =323
n=323-2
n=321
2/3+2/15+2/35+...+2/n x (n+2) = 322/323
2/1x3+2/3x5+2/5x7 +...+ 2/nx(n+2) = 322/323
1-1/3+1/3-1/5+1/5-1/7+...+1/n-1/(n+2) = 322/323
1-1/n+2 = 322/323
1/n+2 = 1-322/323
1/n+2 = 1/323
=> n+2 = 323
n = 323 - 2 = 321
\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{x.\left(x+2\right)}=\frac{332}{323}\)
=>\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{332}{323}\)
=>\(\frac{1}{1}-\frac{1}{x+2}=\frac{332}{323}\)
=>\(\frac{x+2}{x+2}-\frac{1}{x+2}=\frac{332}{323}\)
=>\(\frac{x+1}{x+2}=\frac{332}{323}\)
=>332.(x+2)=323.(x+1)
=>332x+664=323x+323
=>332x-323x=323-664
=>x.(332-323)=-323
=>9x=-323
=>x=-323/9
vậy n=-323/9 .(-323/9+2)=98515/81
bài2 \(x\times\dfrac{15}{16}-x\times\dfrac{4}{16}=2\)
\(x\times\dfrac{11}{16}=2\)
\(x=2:\dfrac{11}{16}\)
\(x=\dfrac{32}{11}\)
Bài 1 :
\(\dfrac{x}{16}\times\left(2017-1\right)=2\)
\(\dfrac{x}{16}\times2016=2\)
\(\dfrac{x}{16}=\dfrac{2}{2016}\)
\(x=\dfrac{2}{2016}\times16\)
\(x=\dfrac{1}{63}\)
Bài 3 :
b) Ta có 1+ 2 + 3 +4 + ...+ x =15
Nên \(\frac{x\left(x+1\right)}{2}=15\)
\(x\left(x+1\right)=30\)
=> \(x\left(x+1\right)=5.6\)
=> x = 5
Bài 2:
h; \(\dfrac{2}{3}\)\(x\) + 50% + \(x\) = \(\dfrac{1}{10}\)
\(\dfrac{2}{3}\)\(x\) + \(\dfrac{1}{2}\) + \(x\) = \(\dfrac{1}{10}\)
(\(\dfrac{2}{3}\)\(x\) + \(x\)) + \(\dfrac{1}{2}\) = \(\dfrac{1}{10}\)
\(x\) \(\times\) (\(\dfrac{2}{3}\) + 1) + \(\dfrac{1}{2}\) = \(\dfrac{1}{10}\)
\(x\) \(\times\) \(\dfrac{5}{3}\) + \(\dfrac{1}{2}\) = \(\dfrac{1}{10}\)
\(x\) \(\times\) \(\dfrac{5}{3}\) = \(\dfrac{1}{10}\) - \(\dfrac{1}{2}\)
\(x\) \(\times\) \(\dfrac{5}{3}\) = \(\dfrac{-2}{5}\)
\(x\) = \(\dfrac{-2}{5}\): \(\dfrac{5}{3}\)
\(x\) = - \(\dfrac{6}{25}\)
Lớp 5 chưa học số âm em nhé.
(1/2003+1/2004+1/2005) / (2/2003+2/2004+2/2005)
= (1/2003+1/2004+1/2005) / 2(1/2003+1/2004+1/2005)
= 1/2
2/3 + 2/15 + 2/35 + ... + 2/n = 322/323
2/1x3 + 2/3x5 + 3/5x7 + ... + 2/nx(n+2) = 322/323
1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + .... + 1/n-1 - 1/(n+2) = 322/323
1 - 1/n+2 = 322/323
1/n+2 = 1 - 322/323
1/n+2 = 1/323
=> x + 2 = 323
n = 323 - 2 = 321
2/3 + 2/15 + 2/35 + ... + 2/n = 322/323
2/1x3 + 2/3x5 + 3/5x7 + ... + 2/nx(n+2) = 322/323
1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + .... + 1/n-1 - 1/(n+2) = 322/323
1 - 1/n+2 = 322/323
1/n+2 = 1 - 322/323
1/n+2 = 1/323
=> x + 2 = 323
n = 323 - 2 = 321