K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2018

Áp dụng Cosi Rồi áp dụng tiếp AM-GM là ra nhé :) Ko bt có đúng ko nx 

Mình làm 1 phần nhé ko phải dùng Cosi

Phân tích: \(x+y+\frac{1}{2x}+\frac{2}{y}\)\(=\left(\frac{y}{2}+\frac{2}{y}\right)+\left(\frac{x}{2}+\frac{y}{2}\right)+\left(\frac{x}{2}+\frac{1}{2x}\right)\)\(\ge2\sqrt{\left(\frac{x}{2}.\frac{1}{2}\right)}+2\sqrt{\left(\frac{y}{2}.\frac{2}{y}\right)}+\frac{3}{2}=\frac{9}{2}\)

\(\Rightarrow x+y+\frac{1}{2x}+\frac{2}{y}\ge\frac{9}{2}\)

Đẳng thức xảy ra khi:

Ta có: \(\frac{x}{2}=\frac{1}{2x}\Rightarrow\left(2x.x\right)=\left(2.1\right)\Rightarrow2x^2.2\Rightarrow x=1\)( Thỏa mãn ) ( vì x là một số thực dương )

Ta có: \(\frac{y}{2}=\frac{2}{y}\Rightarrow\left(y.y\right)=\left(2.2\right)\Rightarrow y^2=4\Rightarrow y=2\)( thỏa mãn ) ( vì y là một số thực dương )

Mà: \(x+y=1+2=3\)( thỏa mãn đề bài \(x+y\ge3\))

Vậy đẳng thức \(x+y+\frac{1}{2x}+\frac{2}{y}\ge\frac{9}{2}\)khi x = 1 và y = 2 

6 tháng 11 2018

hùi nãy mem nào k sai cho t T_T t buồn 

\(VT\ge6\left(x^2+y^2+z^2+2xy+2yz+2zx\right)-2\left(xy+yz+zx\right)+2.\frac{9}{4\left(x+y+z\right)}\)

\(=6\left(x+y+z\right)^2-2.\frac{\left(x+y+z\right)^2}{3}+\frac{9}{2\left(x+y+z\right)}=6.\left(\frac{3}{4}\right)^2-2.\frac{\left(\frac{3}{4}\right)^2}{3}+\frac{9}{2.\frac{3}{4}}\)

\(=\frac{27}{8}-\frac{3}{8}+6=9\)

\(\Rightarrow\)\(VT\ge9\) ( đpcm ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=\frac{1}{4}\)

Chúc bạn học tốt ~ 

6 tháng 11 2018

\(ab+bc+ca\le a^2+b^2+c^2\le\frac{\left(a+b+c\right)^2}{3}\) ( bđt phụ + Cauchy-Schwarz dạng Engel ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)

CM bđt phụ : \(x^2+y^2+z^2\ge xy+yz+zx\)

\(\Leftrightarrow\)\(2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)

\(\Leftrightarrow\)\(2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)

\(\Leftrightarrow\)\(\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\ge0\)

\(\Leftrightarrow\)\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) ( luôn đúng ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z\)

Chúc bạn học tốt ~ 

13 tháng 1 2016

\(x+y+\frac{1}{2x}+\frac{2}{y}=\left(\frac{x}{2}+\frac{1}{2x}\right)+\left(\frac{y}{2}+\frac{2}{y}\right)+\left(\frac{x}{2}+\frac{y}{2}\right)\ge2\sqrt{\frac{x}{2}.\frac{1}{2x}}+2\sqrt{\frac{y}{2}.\frac{2}{y}}+\frac{3}{2}=1+2+\frac{3}{2}=\frac{9}{2}\)Đẳng thức xảy ra khi và chỉ khi :

\(\frac{x}{2}=\frac{1}{2x}\Leftrightarrow2x^2=2\Rightarrow x=1\)(vì x>0)

\(\frac{y}{2}=\frac{2}{y}\Leftrightarrow y^2=4\Rightarrow y=2\)(vì y>0)

\(x+y=3\)

\(\Rightarrow x=1;y=2\)

13 tháng 1 2016

tưởng ngon ăn dùng cô-si ai dè @@

19 tháng 6 2015

+\(10=x+3y=x+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}\ge10\sqrt[10]{\frac{1}{3^9}x.y^9}\)

\(=\frac{10}{3}.\sqrt[10]{3}.\sqrt[10]{xy^9}\)

\(\Rightarrow xy^9\le3^9\)

+\(\frac{1}{\sqrt{x}}+\frac{27}{\sqrt{3y}}=\frac{1}{\sqrt{x}}+\frac{3}{\sqrt{3y}}+\frac{3}{\sqrt{3y}}+.....+\frac{3}{\sqrt{3y}}\)

\(\ge10\sqrt[10]{\frac{3^9}{\sqrt{3^9x.y^9}}}\ge10\sqrt[10]{\frac{3^9}{\sqrt{3^9.3^9}}}=10\)

Dấu "=" xảy ra khi và chỉ khi \(x=1;y=3\)

x + 25 = 64

x         = 64 - 25

x         = 39

Vậy x = 39

11 tháng 5 2017

Cách khác: 

\(\frac{\left(x+y\right)^2}{2}+\frac{\left(x+y\right)}{4}\ge2xy+\frac{x+y}{4}\)

\(=\frac{4xy+x+4xy+y}{4}=\frac{x\left(4y+1\right)+y\left(4x+1\right)}{4}\)

\(\ge\frac{4x\sqrt{y}+4y\sqrt{x}}{4}=x\sqrt{y}+y\sqrt{x}\)

Dấu = xảy ra khi \(x=y=\frac{1}{4}\)

11 tháng 5 2017

\(\frac{1}{2}\left(x+y\right)\left(x+y+\frac{1}{2}\right)=\frac{1}{2}\left(x+y\right)\left(x+\frac{1}{4}+y+\frac{1}{4}\right)\)

Áp dụng bất đẳng thức cauchy:

\(x+y\ge2\sqrt{xy}\)

\(x+\frac{1}{4}\ge2\sqrt{\frac{x}{4}}=\sqrt{x}\)

\(y+\frac{1}{4}\ge2\sqrt{\frac{y}{4}}=\sqrt{y}\)

do đó \(VT\ge\frac{1}{2}.2.\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)=x\sqrt{y}+y\sqrt{x}\)(đpcm)

Dấu = xảy ra khi \(x=y=\frac{1}{4}\)