K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2022

\(\left|x+\dfrac{2}{5}\right|+\dfrac{1}{3}=\dfrac{1}{4}\)

\(\Leftrightarrow\left|x+\dfrac{2}{5}\right|=-\dfrac{1}{12}\)

\(\Rightarrow x\in\varnothing\left(\left|x\right|\ge0\forall x\right)\)

Vậy không tìm được x thoả mãn đề bài.

3 tháng 7 2022

\(\left|x+\dfrac{2}{5}\right|=\dfrac{1}{4}-\dfrac{1}{3}=-\dfrac{1}{12}\)( vô lí ) 

Vì |x+2/5| >= 0 ; -1/12 < 0 

8 tháng 11 2021

\(=\dfrac{11}{4}:\dfrac{33}{16}-0,5+\left(\dfrac{14}{5}-3\right)^2\\ =\dfrac{11}{4}\cdot\dfrac{16}{33}-\dfrac{1}{2}+\left(-\dfrac{1}{5}\right)^2\\ =\dfrac{4}{3}-\dfrac{1}{2}+\dfrac{1}{25}=\dfrac{131}{150}\)

22 tháng 8 2023

\(\left(-\dfrac{2}{3}+\dfrac{3}{7}\right):\dfrac{4}{5}+\left(-\dfrac{1}{3}+\dfrac{4}{7}\right)+\dfrac{4}{5}\\ =-\dfrac{5}{21}:\dfrac{4}{5}+\dfrac{5}{21}\\ =\left(-\dfrac{5}{21}+\dfrac{5}{21}\right):\dfrac{4}{5}\\ =0:\dfrac{4}{5}\\ =0.\)

22 tháng 8 2023

Sửa cho mk dòng đầu là :4/5 và dòng tiếp theo mk thiếu :4/5

 

\(A=\dfrac{-1}{5}x^3\cdot\dfrac{1}{32}x^{20}y^5\cdot\dfrac{64}{27}x^3y^9\cdot z^{2022}=-\dfrac{2}{135}x^{26}y^{14}z^{2022}\)

11 tháng 2 2022

`A=\frac{-1}{5}x^3 \times \frac{1}{32}x^{20}y^5 \times \frac{64}{27}x^3y^9 \times z^{2022}=-\frac{2}{135}x^{26}y^{14}z^{2022}`

8 tháng 8 2023

\(=4.\left(-\dfrac{1}{8}\right)-2.\dfrac{1}{4}-\dfrac{3}{2}+1=\)

\(=-\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{3}{2}+1=-\dfrac{3}{2}\)

8 tháng 8 2023

= 4 . -1/8 - 2 . -1/4 + 3 . -1/2 + 1

= -1/2 - -1/2 + -3/2 + 1

= -1/2

30 tháng 10 2023

\(E=\dfrac{\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{2002}-1\right)\left(\dfrac{1}{2003}-1\right)}{\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot...\cdot\dfrac{9999}{10000}}\)

\(=\dfrac{\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{2002}\right)\left(1-\dfrac{1}{2003}\right)}{\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{100^2}\right)}\)

\(=\dfrac{\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{2002}\right)\left(1-\dfrac{1}{2003}\right)}{\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1+\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{100}\right)\left(1+\dfrac{1}{100}\right)}\)

\(=\dfrac{\dfrac{100}{101}\cdot\dfrac{101}{102}\cdot...\cdot\dfrac{2002}{2003}}{\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{3}\right)\cdot...\cdot\left(1+\dfrac{1}{100}\right)}\)

\(=\dfrac{100}{2003}:\left(\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\right)\)

\(=\dfrac{100}{2003}:\left(\dfrac{101}{2}\right)=\dfrac{100}{2003}\cdot\dfrac{2}{101}=\dfrac{200}{202303}\)

17 tháng 9 2017

\(\dfrac{2}{\left(x-1\right)\left(x-3\right)}+\dfrac{5}{\left(x-3\right)\left(x-8\right)}+\dfrac{12}{\left(x-8\right)\left(x-20\right)}=\dfrac{-3}{4}\)

\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{1}{x-3}+\dfrac{1}{x-3}-\dfrac{1}{x-8}+\dfrac{1}{x-8}+\dfrac{1}{x-20}=-\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{1}{x-20}=-\dfrac{3}{4}\)

Đến đây cạn rồi?! ==''

17 tháng 9 2017

lạc trôi rồi hả?

29 tháng 8 2023

\(...A=\left(-\dfrac{1}{2}\right).\left(-\dfrac{2}{3}\right).\left(-\dfrac{3}{4}\right)....\left(-\dfrac{1998}{1999}\right).\)

Số dấu trừ là : \(\left(1998-1\right):1+1=1998\) là số chẵn

\(\Rightarrow A=\dfrac{1.2.3...1998}{2.3.4...1999}\)

\(\Rightarrow A=\dfrac{1}{1999}\)

29 tháng 8 2023

gợi ý nè

tính hết mấy cái hiệu trong ngoặc rồi nhân lại

vì kết thúc ở số 1999

nên sẽ có 1999 dấu -

nên kq là âm

nhân ra rồi triệt tiêu đi

16 tháng 7 2023

\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{x.\left(2x+1\right)}=\dfrac{1}{10}\)

\(\Leftrightarrow\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{2x.\left(2x+1\right)}=\dfrac{1}{20}\)

\(\Leftrightarrow\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2x.\left(2x+1\right)}=\dfrac{1}{20}\)

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2x}-\dfrac{1}{2x+1}=\dfrac{1}{20}\)

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2x+1}=\dfrac{1}{20}\)

\(\Leftrightarrow\dfrac{1}{2x+1}=\dfrac{9}{20}\)

\(\Leftrightarrow2x+1=\dfrac{20}{9}\Leftrightarrow x=\dfrac{11}{18}\)

16 tháng 7 2023

Em giải như XYZ olm em nhé

Sau đó em thêm vào lập luận sau:

\(x\) = \(\dfrac{11}{18}\)

Vì \(\in\) N* 

Vậy \(x\in\) \(\varnothing\)

16 tháng 7 2023

\(\dfrac{1}{15}\) + \(\dfrac{1}{21}\) + \(\dfrac{1}{28}\) + \(\dfrac{1}{36}\) +...+ \(\dfrac{2}{x\left(x+1\right)}\) = \(\dfrac{11}{40}\) (\(x\in\) N*)

\(\dfrac{1}{2}\).(\(\dfrac{1}{15}\)+\(\dfrac{1}{21}\)+\(\dfrac{1}{28}\)+\(\dfrac{1}{36}\)+.....+ \(\dfrac{2}{x\left(x+1\right)}\)) = \(\dfrac{11}{40}\) \(\times\) \(\dfrac{1}{2}\)

\(\dfrac{1}{30}\) + \(\dfrac{1}{42}\) + \(\dfrac{1}{56}\) + \(\dfrac{1}{72}\)+...+ \(\dfrac{1}{x\left(x+1\right)}\) = \(\dfrac{11}{80}\)

\(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\) + \(\dfrac{1}{7.8}\)+...+ \(\dfrac{1}{x\left(x+1\right)}\) = \(\dfrac{11}{80}\)

\(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + \(\dfrac{1}{6}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{8}\) + \(\dfrac{1}{8}\)-\(\dfrac{1}{9}\)+...+ \(\dfrac{1}{x}\)-\(\dfrac{1}{x+1}\) = \(\dfrac{11}{80}\)

\(\dfrac{1}{5}\) - \(\dfrac{1}{x+1}\) = \(\dfrac{11}{80}\)

         \(\dfrac{1}{x+1}\) = \(\dfrac{1}{5}\) - \(\dfrac{11}{80}\)

           \(\dfrac{1}{x+1}\) = \(\dfrac{1}{16}\)

            \(x\) + 1 = 16

            \(x\)       = 16 - 1

             \(x\)     = 15 

15 tháng 7 2023

\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{125}{376}\)

\(\Leftrightarrow\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{125}{376}\)

\(\Leftrightarrow\dfrac{1}{3}\left(1-\dfrac{1}{x+3}\right)=\dfrac{125}{376}\left(x\ne0;x\ne-3\right)\)

\(\Leftrightarrow\dfrac{x+3-1}{x+3}=\dfrac{3.125}{376}\Leftrightarrow\dfrac{x+2}{x+3}=\dfrac{3.125.}{376}.\dfrac{\left(x+3\right)}{x+3}\)

\(\Leftrightarrow376\left(x+2\right)=3.125.\left(x+3\right)\)

\(\Leftrightarrow376x+752=375x+1125\)

\(\Leftrightarrow376x-375x=1125-752\Leftrightarrow x=373\left(x\in N^{\cdot}\right)\)