Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+3+3^2+3^3+...+3^{99}+3^{100}\\ \Rightarrow3A=3+3^2+3^3+...+3^{100}+3^{101}\\ \Rightarrow3A-A=3^{101}-1\\ \Rightarrow2A=3^{101}-1\\ \Rightarrow A=\left(3^{101}-1\right).\dfrac{1}{2}\\ \Rightarrow\dfrac{3^{101}}{2}-\dfrac{1}{2}.\)
\(A=1+3+3^2+3^3+...+3^{99}+3^{100}\)
Ta có: \(3A=3+3^2+3^3+...+3^{99}+3^{100}\)
Khi đó: \(3A-A=3+3^2+3^3+...+3^{99}+3^{100}+3^{101}-\left(1+3+3^2+3^3+...+3^{99}+3^{100}\right)\)
\(=3^{101}-1\)
\(\Leftrightarrow2A=3^{101}-1\)
Vậy \(A=\left(3^{101}-1\right):2\)
a,M=2^0-2^1+2^2-2^3+2^4-2^5+.....+2^2012
2M=2^1-2^2+2^3-2^4+2^5-2^5+......-2^2012+2^2013
3M=2^0+2^2013
M=(2^0+2^2013)÷3
Vậy.......
b,N=3-3^2+3^3-3^4+3^5-3^6+.....+3^2011-3^2012
3N=3^2-3^3+3^4-3^5+3^6-3^7+......+3^2012-3^2013
4N=3-3^2013
N=(3-3^2013)÷4
Vậy........
K tao nhé ko lên lớp tao đánh m😈😈😈
q=1/3; u1=2/3
\(S_{100}=\dfrac{\dfrac{2}{3}\cdot\left(\dfrac{1}{3^{100}}-1\right)}{\dfrac{1}{3}-1}=-\dfrac{1}{3^{100}}+1=\dfrac{-1+3^{100}}{3^{100}}\)
A = 1 + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\) +.......+\(\dfrac{1}{3^{n-1}}\) + \(\dfrac{1}{3^n}\)
3\(\times\) A = 3 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\)+........+ \(\dfrac{1}{3^{n-1}}\)
3A - A = 3 + \(\dfrac{1}{3}\) - 1 - \(\dfrac{1}{3^n}\)
2A = \(\dfrac{7}{3}\) - \(\dfrac{1}{3^n}\)
A = ( \(\dfrac{7}{3}\) - \(\dfrac{1}{3^n}\)): 2
A = \(\dfrac{7.3^{n-1}-1}{3^n}\) : 2
A = \(\dfrac{7.3^{n-1}-1}{2.3^n}\)
B = \(\dfrac{1}{2}\) - \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^3}\) - \(\dfrac{1}{2^4}\)+......+\(\dfrac{1}{2^{99}}\) - \(\dfrac{1}{2^{100}}\)
2B = 2 - \(\dfrac{1}{2}\) + \(\dfrac{1}{2^2}\) - \(\dfrac{1}{2^3}\)+ \(\dfrac{1}{2^4}\)-.......-\(\dfrac{1}{2^{99}}\)
2B + B = 2 - \(\dfrac{1}{2^{100}}\)
3B = 2 - \(\dfrac{1}{2^{100}}\)
B = ( 2 - \(\dfrac{1}{2^{100}}\)): 3
B = \(\dfrac{2.2^{100}-1}{2^{100}}\) : 3
B = \(\dfrac{2^{101}-1}{3.2^{100}}\)
Ta có : \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+......+\frac{1}{2^{99}}+\frac{1}{2^{100}}\)
\(\Leftrightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{99}}\)
=> 2A - A = 1 - \(\frac{1}{2^{100}}\)
<=> A = 1 - \(\frac{1}{2^{100}}\)
\(A=\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}.\)
\(\Rightarrow2A=1+\frac{1}{2^1}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\)
\(\Rightarrow2A-A=1-\frac{1}{2^{100}}\)
\(A=1-\frac{1}{2^{100}}\)
Bài 1:
a: \(2A=2^{101}+2^{100}+...+2^2+2\)
\(\Leftrightarrow A=2^{100}-1\)
b: \(3B=3^{101}+3^{100}+...+3^2+3\)
\(\Leftrightarrow2B=3^{100}-1\)
hay \(B=\dfrac{3^{100}-1}{2}\)
c: \(4C=4^{101}+4^{100}+...+4^2+4\)
\(\Leftrightarrow3C=4^{101}-1\)
hay \(C=\dfrac{4^{101}-1}{3}\)
Ta có :
B = 2100 - 299 + 298 - 297 + ... + 22 - 2 + 1
=> B = ( 2100 + 298 + ... + 22 + 1 ) - ( 299 + 297 + ... + 2 )
=> 22B = 2 . [ ( 2100 + 298 + ... + 22 + 1 ) - ( 299 + 297 + ... + 2 ) ]
=> 4B = ( 2102 + 2100 + ... + 22 ) - ( 2101 + 299 + ... + 23 )
=> 4B - B = [( 2102 + 2100 + ... + 22 ) - ( 2101 + 299 + ... + 23 )] - [( 2100 + 298 + ... + 22 + 1 ) - ( 299 + 297 + ... + 2 )]
=> 3B = ( 2102 - 1 ) + ( 2 - 2101 )
=> 3B = 2101 - 1
=> B = \(\frac{2^{101} - 1}{3}\)
gọi dãy số là A, ta có:
A = 2100 - 299 - ...... - 21
2A = 2101 - 2100 - .... - 22
2A = ( 2101 - ... - 22 ) - ( 2100 - ... - 2 )
A = 2101 - 2
A = 1 +3 + 32 + 33 + .....+ 399 + 3100
3 x A = 3 + 32 + 33+.........+ 399 + 3100 + 3101
3 x A - A = 3101 - 1
2A = 3101 - 1
A = (3101 - 1): 2
A = \(\dfrac{3^{101^{ }}-1}{2}\)