Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(x-2\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)
=>x=0 hoặc x=4
b: \(2x=\sqrt{x}\)
\(\Leftrightarrow2x-\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-1\right)=0\)
=>x=0 hoặc x=1/4
c: \(x-3\sqrt{x}+2=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)
=>x=1 hoặc x=4
d:
ĐKXĐ: x>=1
\(\Leftrightarrow\sqrt{x-1}\left(x+2\right)=0\)
=>x-1=0 hoặc x+2=0
=>x=1(nhận) hoặc x=-2(loại)
a) |x| = 4
\(\left[ {_{x = - 4}^{x = 4}} \right.\)
Vậy \(x \in \{ 4; - 4\} \)
b) |x| = \(\sqrt 7 \)
\(\left[ {_{x = - \sqrt 7 }^{x = \sqrt 7 }} \right.\)
Vậy \(x \in \{ \sqrt 7 ; - \sqrt 7 \} \)
c) ) |x+5| = 0
x+5 = 0
x = -5
Vậy x = -5
d) \(\left| {x - \sqrt 2 } \right|\) = 0
x - \(\sqrt 2 \) = 0
x = \(\sqrt 2 \)
Vậy x =\(\sqrt 2 \)
Bài 1:\(3^{x+2}-3^x=24\Rightarrow3^x.3^2-3^x=24\Rightarrow3^x.\left(3^2-1\right)=24\Rightarrow3^x.8=24\Rightarrow3^x=3\Rightarrow x=1\)
Bài 2:a,Chọn đáp án C.x0=1
b,Chọn đáp án D\(-\sqrt{2}+\sqrt{5}\) vì \(\sqrt{5}>\sqrt{2}\Rightarrow\left|\sqrt{2}-\sqrt{5}\right|=-\left(\sqrt{2}-\sqrt{5}\right)\)
a: \(\left(x^2-3\right)\left(2x^2-\dfrac{9}{8}\right)\left(\sqrt{\left|x\right|}-\sqrt{\dfrac{5}{2}}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-3=0\\2x^2-\dfrac{9}{8}=0\\\sqrt{\left|x\right|}-\sqrt{\dfrac{5}{2}}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2=3\\x^2=\dfrac{9}{16}\\\left|x\right|=\dfrac{5}{2}\end{matrix}\right.\Leftrightarrow x\in\left\{-\sqrt{3};\sqrt{3};\dfrac{3}{4};-\dfrac{3}{4};\dfrac{-5}{2};\dfrac{5}{2}\right\}\)
b: \(x-5\sqrt{x}=0\)(ĐKXĐ: x>=0)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-5\right)=0\)
=>x=0 hoặc x=25
a) 1
b) 1 hoặc 0
c) 0
d) 2
Căn bản cx đã muộn nên mk làm ngắn gọn, nếu bn cần lời giải chi tiết hãy add mk để có lời giải chi tiết nhé!
a) \(2\sqrt{x}-10=20\left(ĐKXD:x\ge0\right)\)
\(\Leftrightarrow2\sqrt{x}=30\Leftrightarrow\sqrt{x}=15\)
\(\Leftrightarrow x=225\)
b) \(2x-\sqrt{x}=0\left(ĐKXĐ:x\ge0\right)\)
\(\Leftrightarrow2x=\sqrt{x}\Leftrightarrow4x^2=x\Leftrightarrow4x^2-x=0\Leftrightarrow x\left(4x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\4x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{4}\end{cases}}}\)
Vậy ....
c) \(x+3\sqrt{x}=0\left(ĐKXĐ:x\ge0\right)\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}+3\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x\in\varnothing\end{cases}}}\)
Vậy x = 0
d) \(\left(x-1\right)\left(x^2+1\right)=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x^2=-1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x\in\varnothing\end{cases}}}\)
Vậy x = 1
\(A=\dfrac{3\left(\sqrt{x}+1\right)-2}{2\left(\sqrt{x}+1\right)}=\dfrac{3}{2}-\dfrac{1}{\sqrt{x}+1}\)
Ta có \(\sqrt{x}+1\ge1\Leftrightarrow-\dfrac{1}{\sqrt{x}+1}\ge-1\)
\(\Leftrightarrow A\ge\dfrac{3}{2}-1=\dfrac{1}{2}\)
Dấu \("="\Leftrightarrow x=0\)
ĐKXĐ: \(x^2-x\ge0\)
\(3\sqrt{x^2-x}=\sqrt{54}\)
\(\Rightarrow9\left(x^2-x\right)=54\)
\(\Rightarrow x^2-x-6=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\) (thỏa mãn)
\(x-2\cdot\sqrt{x}=0\)
=> x-2=0 hoặc \(\sqrt{x}\)=0
=>x=2 hoặc x=0
Trường hợp 1: \(x-2\sqrt{x}=0\)
\(\Rightarrow x-4.x=0\)
\(\Rightarrow-4x=0-x\)
\(\Rightarrow-4x=-x\)
\(\Rightarrow x=4\)
Trường hợp 2: \(x-2\sqrt{x}=0\)
\(\Rightarrow\sqrt{x}=0\Rightarrow x=0\)
Vậy: \(x\in\left\{4;0\right\}\)