Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: xy//x'y' nên xAB ^ = ABy' (hai góc so le trong).
AA' là tia phân giác của xAB nên A1 = A2 = 1/2 xAB
BB' là tia phân giác của ABy' nên B1 = B2 = 1/2 ABy'
Từ trên ta có A2 = B1
Mà hai góc ở vị trí so le trong, nên
=> AA' // BB/ (có 2 góc so le trong bằng nhau)
b, xy//x'y' nên A1 = AA'B (2 góc so le trong)
AA'//BB' nên A1 = AB'B(2 góc đồng vị)
Vậy AA'B = AB'B
a) nên (hai góc so le trong). (1)
là tia phân giác của nên: . (2)
là tia phân giác của nên: . (3)
Từ (2) và (3) ta có:
Mà hai góc ở vị trí so le trong, nên từ (1), (2), (3) ta có: // (có 2 góc so le trong bằng nhau).
b) nên (hai góc so le trong).
nên (hai góc đồng vị).
Vậy .
mik quên viết hình mà các bạn thử đoán hình giúp mik với ạ
a, Ta có: At∩xx′={A}(gt)At∩xx′={A}(gt)
Mà xx' // yy' (gt)
=> At ∩∩ yy' (hệ quả của tiên đề ơ-clit)
b,Tia At là phân giác góc xAB (gt)
=> góc xAt = góc BAt = Góc xAB / 2 = 80o/2 = 40o
Có: xx' // yy' (gt)
mà At ∩∩ yy' = {C} (gt)
=> Góc xAt = góc ACB = 40o (cặp góc so le trong )
a) xyxy // x' y'x′y′ nên \widehat{xAB}=\widehat{ABy'}xAB=ABy′ (hai góc so le trong). (1)
{AA}'AA′ là tia phân giác của \widehat{xAB}xAB nên: \widehat{{A}_{1}}=\widehat{{A}_{2}}=\dfrac{1}{2} \widehat{{xAB}}A1=A2=21xAB (2)
{BB}'BB′ là tia phân giác của \widehat{{ABy}'}ABy′ nên: \widehat{B_{1}}=\widehat{B_{2}}=\dfrac{1}{2} \widehat{A B y'}B1=B2=21ABy′ (3)
Từ (1), (2), (3) ta có: \widehat{{A}_{2}}=\widehat{{B}_{1}}A2=B1.
Mà hai góc ở vị trí so le trong, nên {AA}' // {BB}'AA′//BB′
b) x yxy // x' y'x′y′ nên \widehat{A_{1}}=\widehat{{AA}' {B}}A1=AA′B (hai góc so le trong).
{AA}' / / {BB}'AA′//BB′ nên \widehat{{A}_{1}}=\widehat{{AB}' {B}}A1=AB′B (hai góc đồng vị).
Vậy \widehat{{AA}' {B}}=\widehat{{AB}' {B}}AA′B=AB′B.
a) xyxy // x' y'x′y′ nên \widehat{xAB}=\widehat{ABy'}xAB=ABy′ (hai góc so le trong). (1)
{AA}'AA′ là tia phân giác của \widehat{xAB}xAB nên: \widehat{{A}_{1}}=\widehat{{A}_{2}}=\dfrac{1}{2} \widehat{{xAB}}A1=A2=21xAB (2)
{BB}'BB′ là tia phân giác của \widehat{{ABy}'}ABy′ nên: \widehat{B_{1}}=\widehat{B_{2}}=\dfrac{1}{2} \widehat{A B y'}B1=B2=21ABy′ (3)
Từ (1), (2), (3) ta có: \widehat{{A}_{2}}=\widehat{{B}_{1}}A2=B1.
Mà hai góc ở vị trí so le trong, nên {AA}' // {BB}'AA′//BB′
b) x yxy // x' y'x′y′ nên \widehat{A_{1}}=\widehat{{AA}' {B}}A1=AA′B (hai góc so le trong).
{AA}' / / {BB}'AA′//BB′ nên \widehat{{A}_{1}}=\widehat{{AB}' {B}}A1=AB′B (hai góc đồng vị).
Vậy \widehat{{AA}' {B}}=\widehat{{AB}' {B}}AA′B=AB′B.