Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
18C
22D
26B
Giải thích thêm:
ta có: v=s'(t)=3t²-6t+6
a=s"(t)=6t-6
Thời điểm gia tốc bị triệt tiêu khi a=0
⇔6t-6=0
⇔t=1
Vậy v=3.1²-6.1+6=3 (m/s)
32A
34C
35A
cho mình hỏi là tại sao ở câu 26 lại phải đạo hàm thêm lần nữa vậy?
\(\left\{{}\begin{matrix}6u_2+u_5=1\\3u_3+2u_4=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6u_1.q+u_1.q^4=1\\3u_1.q^2+2u_1.q^3=-1\end{matrix}\right.\)
\(\Rightarrow u_1\left(6q+q^4+3q^2+2q^3\right)=0\)
\(\Leftrightarrow q^3+2q^2+3q+6=0\)
\(\Leftrightarrow\left(q+2\right)\left(q^2+3\right)=0\)
\(\Leftrightarrow q=-\text{}2\)
\(\Rightarrow u_1=\dfrac{1}{4}\)
\(\Rightarrow u_n=u_1.q^{n-1}=\dfrac{1}{4}.\left(-2\right)^{n-1}=\left(-2\right)^{n-3}\)
no khó lắm tui lớp 5 thôi chịu
:(((((((((((
1.a
\(\lim\limits_{x\rightarrow2}\dfrac{x^3+3x^2-9x-2}{x^3-x-6}=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x^2+5x+1\right)}{\left(x-2\right)\left(x^2+2x+3\right)}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{x^2+5x+1}{x^2+2x+3}=\dfrac{15}{11}\)
b.
\(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{x^2-x+3}+x\right)=\lim\limits_{x\rightarrow-\infty}\dfrac{-x+3}{\sqrt{x^2-x+3}-x}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{-1+\dfrac{3}{x}}{-\sqrt{1-\dfrac{1}{x}+\dfrac{3}{x^2}}-1}=\dfrac{-1}{-2}=\dfrac{1}{2}\)