K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2016

 a1/a2 = b1/b2 = c1/c2 = k

a1=k.a2, b1=k.b2, c1=k.c2

Biểu thức trở thành

√(k.a2 + k.b2 + k.c2).(a2 + b2 + c2)= √k.a2.a2 + √k.b2.b2 + √k.c2.c2

√k.(a2+b2+c2)2 = a2. √k + b2. √k + c2. √k

(a2+b2+c2). √k = (a2+b2+c2). √k (hiển nhiên đúng)

Suy ra điều phải chứng minh

9 tháng 9 2017

22 tháng 6 2018

Ta chứng minh BĐT

( a + b + c ) ( 1 a + 1 b + 1 c ) ≥ 9 ( * ) ( * ) < = > 3 + ( a b + b a ) + ( b c + c b ) + ( c a + a c ) ≥ 9

Áp dụng BĐT Cô – si cho hai số dương ta có:

a b + b a ≥ 2 b c + c b ≥ 2 c a + a c ≥ 2 =>(*) đúng

 

= > 9 a + b + c ≤ 1 a + 1 b + 1 c ≤ 3 = > a + b + c ≥ 3

Trở lại bài toán: Áp dụng BĐT Cô si cho hai số dương ta có  1 + b 2 ≥ 2 b

Ta có: a 1 + b 2 = a − a b 2 1 + b 2 ≥ a − a b 2 2 b = a − a b 2 ( 1 )

 

Tương tự ta có: 

b 1 + c 2 ≥ b − b c 2 ( 2 ) c 1 + a 2 ≥ c − c a 2 ( 3 )

 

Cộng từng vế của (1), (2) và (3) ta có:

a 1 + b 2 + b 1 + c 2 + c 1 + a 2 ≥ a + b + c − 1 2 ( a b + b c + c a ) = > a 1 + b 2 + b 1 + c 2 + c 1 + a 2 + 1 2 ( a b + b c + c a ) ≥ a + b + c ≥ 3

 

2 tháng 8 2017

Dễ vậy mà ko làm đc àk

\(a_1.a_2=b_1.b_2\Rightarrow\frac{a_1}{b_1}=\frac{b_2}{a_2}\)

\(\Rightarrow\frac{a_1}{b_1}+\frac{a_2}{b_2}=\frac{b_2}{a_2}+\frac{a_2}{b_2}\ge2\sqrt{\frac{b_2}{a_2}.\frac{a_2}{b_2}}=2\) (AM - GM)

2 tháng 8 2017

có a1.a2=b1.b2

=> a1/b1=b2/a2

có \(\frac{a1}{b1}+\frac{a2}{b2}=\frac{b2}{a2}+\frac{a2}{b2}\)

áp dụng bất đẳng thức cosi cho 2 số dương có

\(\frac{b2}{a2}+\frac{a2}{b2}\ge2\sqrt{\frac{b2}{a2}.\left(\frac{a2}{b2}\right)}=2\)(đpcm)

7 tháng 5 2019

Ta có: x + y = ( a 1 2 +  b 1 ) + ( a 2 2  +  b 2 ) = ( a 1 +  a 2 ) 2  + ( b 1  +  b 2 )

Vì  a 1 ,  a 2 ,  b 1 ,  b 2  là các số hữu tỉ nên  a 1  +  a 2 ,  b 1  +  b 2  cũng là số hữu tỉ.

Lại có: xy = ( a 1 2  +  b 1 )( a 2 2  +  b 2 ) = 2 a 1 a 2  +  a 1 b 2 2  +  a 2 b 1 2  +  b 1 b 2

= ( a 1 b 2  +  a 2 b 1 ) 2  + (2 a 1 a 2  +  b 1 b 2 )

Vì a 1 ,  a 2 ,  b 1 ,  b 2 là các số hữu tỉ nên   a 1 b 2  +  a 2 b 1 ,  a 1 a 2  +  b 1 b 2  cũng là các số hữu tỉ.

20 tháng 8 2016

3, \(\sqrt{\frac{a}{b+c}}=\sqrt{\frac{a^2}{a\left(b+c\right)}}\Rightarrow\frac{1}{\sqrt{\frac{a}{b+c}}}=\sqrt{\frac{a\left(b+c\right)}{a^2}}.\)

Áp dụng bất đẳng thức Cô si ta có : \(\sqrt{\frac{a\left(b+c\right)}{a^2}}\le\frac{a+b+c}{2a}\Rightarrow\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\left(1\right).\)

Chứng minh tương tự ta có : \(\sqrt{\frac{b}{a+c}}\ge\frac{2b}{a+b+c}\left(2\right).\);  \(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\left(3\right).\)

Cộng vế với vế các bất đẳng thức cùng chiều ta được: 

\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge\frac{2\left(a+b+c\right)}{a+b+c}=2.\)( đpcm )

dấu " = " xẩy ra khi a = b = c > 0

10 tháng 4 2020

Ta có: \(\sqrt{\frac{AM}{A_1M}}+\sqrt{\frac{BM}{B_1M}}+\sqrt{\frac{CM}{C_1M}}=\sqrt{\frac{S_2+S_3}{S_1}}+\sqrt{\frac{S_1+S_3}{S_2}}+\sqrt{\frac{S_1+S_2}{S_3}}\)

\(\ge\sqrt{\frac{\left(\sqrt{S_2}+\sqrt{S_3}\right)^2}{2S_1}}+\sqrt{\frac{\left(\sqrt{S_1}+\sqrt{S_3}\right)^2}{2S_2}}+\sqrt{\frac{\left(\sqrt{S_1}+\sqrt{S_2}\right)^2}{2S_3}}\)

\(=\frac{1}{\sqrt{2}}\left(\frac{\sqrt{S_2}+\sqrt{S_3}}{\sqrt{S_1}}+\frac{\sqrt{S_1}+\sqrt{S_3}}{\sqrt{S_2}}+\frac{\sqrt{S_1}+\sqrt{S_2}}{\sqrt{S_3}}\right)\frac{1}{2}\cdot6=3\sqrt{2}\)

Dấu "=" xảy ra khi S=S2=S3 <=> M là trọng tâm \(\Delta ABC\)

2:

a: =>a^2+2ab+b^2-2a^2-2b^2<=0

=>-(a^2-2ab+b^2)<=0

=>(a-b)^2>=0(luôn đúng)

b; =>a^2+b^2+c^2+2ab+2ac+2bc-3a^2-3b^2-3c^2<=0

=>-(2a^2+2b^2+2c^2-2ab-2ac-2bc)<=0

=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)