Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
chẳng ai chịu giải,mà tôi giải ra được rồi nhé, đáp án là 20 cm còn cách làm thì ko tiết lộ đâu
![](https://rs.olm.vn/images/avt/0.png?1311)
CM: EFGH là hình vuông (bạn tự chứng minh nhé)
HD = EA = BF = CG = x
Ta có: AH = AD - HD = 4 - x (cm)
Áp dụng định lí Py-ta-go vào \(\Delta AHE\)
=> HE2 = AE2 + AH2
Diện tích hình vuông EFGH:
HE2 = x2 + ( 4 - x)2
= x2 + 16 - 8x + x2
= 2x2 + 16 - 8x
= 2.(x2 - 4x + 8)
= 2.[(x - 2)2 + 4]
= 2.(x - 2)2 + 8
Vì 2.(x - 2)2 \(\ge\)0
=> 2.(x - 2)2 + 8 \(\ge\)8
Dấu '=' xảy ra khi:
x - 2 = 0 => x = 2 (cm)
Vậy HD = 2cm thì hình vuông EFGH có diện tích nhỏ nhất là 8 cm2
Chúc bạn học tốt!!!
![](https://rs.olm.vn/images/avt/0.png?1311)
câu c nhé
gọi DE giao AC =O, ta có tam giác AEC cân tại E, cậu tự chứng minh
thì góc EAC=gócECA, mà góc ECA=góc CAD ( so le trong)
=> AO là phân giác góc EAD
mặt khác cậu dễ dàng chứng minh DE là trung trực của AC => AO vuông góc với ED
tam giác ADE có phân giác đồng thời là trung tuyến => cân
rồi cậu tự chúng minh tiếp nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
https://olm.vn/hoi-dap/detail/96788252350.html
Tham khảo ở link này (mình gửi cho)
Hoc tốt!!!!!!!!!!!!
![](https://rs.olm.vn/images/avt/0.png?1311)
a, chứng minh EFGH là hình bình hành do có EF//HG (cùng song2 với AC) và HE//GF(cùng song2 BD)
mà có EG=HF=> EFGH là hình thoi (*)
ta có BD//HE=> góc HEF vuông (**)
từ (*)(**) => EFGH là hình vuông ( hình thoi có 1 góc vuông )
A B C D E F G H M
a) Dễ dàng chứng minh được \(\Delta AEH=\Delta BFE=\Delta CGF=\Delta DHG\)
\(\Rightarrow EH=EF=FG=HG\)
=>EFGH là hình thoi
\(\Delta AEH\)vuông cân tại A =>\(\widehat{AEH}=45^0\)
\(\Delta BEF\)vuông cân tại B=>\(\widehat{BEF}=45^0\)
=>\(\widehat{HEF}=90^0\)
=> EFGH là hình vuông
b) Ta chứng minh được : \(\Delta EBC=\Delta FCD\left(cgv.cgv\right)\)
\(\Rightarrow\widehat{BCE}=\widehat{CDF}\)
\(\Rightarrow\widehat{BCE}+\widehat{MCD}=\widehat{CDF}+\widehat{MCD}\)
\(\Rightarrow90^0=\widehat{MCD}+\widehat{CDM}\)
\(\Rightarrow180^0-\widehat{MCD}-\widehat{CDM}=\widehat{DMC}\)
\(\Rightarrow\widehat{DMC}=90^0hayDF\perp CE\)
gọi N là giao điểm của AG và DF
cm tương tự \(DF\perp CE\)ta được AG\(\perp\)DF
=>GN//CM mà G là trung điểm của DC =>N là trung điểm của DM
\(\Delta\)ADM có AN vừa là đường cao vừa là đường phân giác =>\(\Delta ADM\)cân tại A
c)ta cm \(\Delta DMC~\Delta DCF\left(g.g\right)\Rightarrow\frac{DC}{DF}=\frac{CM}{CF}\)
\(\Rightarrow\frac{S_{DMC}}{S_{DCF}}=\left(\frac{DC}{DF}\right)^2\Rightarrow S_{DMC}=\left(\frac{DC}{DF}\right)^2\cdot S_{DCF}\)
Mà \(S_{DCF}=\frac{1}{2}DF\cdot DC=\frac{1}{4}DC^2\)
Vậy \(S_{DMC}=\frac{DC^2}{DF^2}\cdot\frac{1}{4}DC^2\)
Trong tam giác DCF theo định lý py ta go có:
\(DF^2=CD^2+CF^2=CD^2+\left(\frac{1}{2}AB\right)^2=CD^2+\frac{1}{4}CD^2=\frac{5}{4}CD^2\)
Do đó \(S_{DMC}=\frac{CD^2}{\frac{5}{4}CD^2}\cdot\frac{1}{4}CD^2=\frac{1}{5}CD^2=\frac{1}{5}a^2\)
AD cắt BC tại H,vẽ EG vuông góc AC tại G.Tứ giác ABEG vuông tại A,B,G nên ABEG là hình chữ nhật có EG = AB.
=> SAEC = AC.EG : 2 = AB2 : 2 mà
SAHC = HA.HC : 2 (vì AD vuông góc BC) = AD/2.BC/2 : 2 (H là trung điểm AD,BC)
=\(\sqrt{2}AB.\sqrt{2}AB\): 8 (định lí Pi-ta-go với tam giác vuông cân ABC,ABD) = AB2 : 4
=> SAECH = AB2 : 2 - AB2 : 4 = AB2 : 4 = 6,25 (cm2) => AB =\(\sqrt{6,25.4}\)= 5 (cm)
Vậy chu vi hình vuông ABCD là : 5.4 = 20 (cm)
Gọi O là giao điểm của AD và BC như trên hình. Nối EO cắt AC tại F, dễ dàng chứng minh OE = OF và AF = CF.
Diện tích tam giác OAE bằng \(\frac{1}{2}\) diện tích phần tô đậm và bằng: \(S_{\Delta OAE}=\frac{1}{2}.6,25=3,125\left(cm^2\right)\)
\(S_{\Delta OAE}=S_{\Delta OAF}\) vì có cùng chiều cao AF và đáy OE = OF
\(\Rightarrow\) \(S_{\Delta AEF}=S_{\Delta OAE}+S_{\Delta OAF}=2S_{\Delta OAE}=2.3,125=6,25\left(cm^2\right)\)
Ta có: \(S_{\Delta AEF}=\frac{1}{2}.AF.EF=\frac{1}{2}.\left(\frac{1}{2}EF\right).EF=\frac{1}{4}EF^2\)\(\Rightarrow\)\(\frac{1}{4}EF^2=6,25\)
\(\Rightarrow\)\(EF^2=25\)\(\Rightarrow\)\(EF=5\) (do EF > 0).
Do ABCD là hình vuông nên AB = EF = 5cm nên chu vi hình vuông ABCD là 20cm2.