K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2016

\(\left(3xy-x^2+y\right).\frac{2}{3}x^2y\)-

\(3xy.\)\(\frac{2}{3}x^2y\)\(-\) \(x^2.\frac{2}{3}x^2y\)\(+\)\(y.\frac{2}{3}x^2y\)

\(x^3y^2\)\(-\)\(\frac{2}{3}x^4y\)\(+\)\(\frac{2}{3}x^2y^2\)

31 tháng 8 2016
Bạn vậy kết quả là nguyên cụm dài đó hã
11 tháng 9 2018

a) \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

\(A=x^2+2x+y^2-2y-2xy+37\)

\(A=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)

\(A=\left(x-y\right)^2+2\left(x-y\right)+37\)

\(A=\left(x-y\right)^2+2\left(x-y\right)+1+36\)

\(A=\left(x-y+1\right)^2+36\)

Thay x - y = 7 vào A

\(A=\left(7+1\right)^2+36\)

\(A=8^2+36\)

\(A=64+36\)

\(A=100\)

b) \(B=x^3+x^2-y^3+y^2+xy-3x^2y+3xy^2-3xy-9\)

\(B=\left(x^3-3x^2y+3xy^2-y^3\right)+\left(x^2+xy-3xy+y^2\right)-9\)

\(B=\left(x-y\right)^3+\left(x^2-2xy+y^2\right)-9\)

\(B=\left(x-y\right)^3+\left(x-y\right)^2-9\)

Thay x - y = 7 vào B

\(B=7^3+7^2-9\)

\(B=343+49-9\)

\(B=383\)

c) \(C=x^3-x^2-y^3-y^2-3xy\left(x-y\right)+2xy\)

\(C=\left[x^3-y^3-3xy\left(x-y\right)\right]-\left(x^2-2xy+y^2\right)\)

\(C=\left(x-y\right)^3-\left(x-y\right)^2\)

Thay x - y = 7 vào C

\(C=7^3-7^2\)

\(C=343-49\)

\(C=294\)

d) \(D=x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)-95\)

\(D=x^3+x^2-y^3+y^2+xy-3x^2y+3xy^2-3xy-95\)

\(D=\left(x^3-3x^2y+3xy^2-y^3\right)+\left(x^2-2xy+y^2\right)-95\)

\(D=\left(x-y\right)^3+\left(x-y\right)^2-95\)

Thay x - y = 7 vào D

\(D=7^3+7^2-95\)

\(D=343+49-95\)

\(D=297\)

a) Ta có : \(\left(x+y\right)^3=1^3=1\)

\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=1\)

\(\Leftrightarrow x^3+y^3+3xy=1\) ( do x + y = 1 )

6 tháng 10 2019

a) Ta có: A = x3 + y3 + 3xy = (x + y)(x2 - xy + y2) + 3xy = 1. (x2 - xy + y2) + 3xy = x2 - xy + y2 + 3xy = x2 + 2xy + y2 = (x + y)2 = 12 = 1

b)Ta có: B = x3 - y3 - 3xy = (x - y)(x2 + xy + y2) - 3xy = 1. (x2 + xy + y2) - 3xy = x2 + xy + y2 - 3xy = x2 - 2xy + y2 = (x - y)2 = 12 = 1

d) Ta có : D = x3 + y3 + 3xy(x2 + y2) + 6x2y2(x + y)

=> D = (x + y)(x2 - xy + y2) + 3xy(x2 + 2xy + y2) -  6x2y2 + 6x2y2

=> D = x2 - xy + y2 + 3xy(x + y)2 

=> D = x2 - xy + y2 + 3xy.12

=> D = x2 + 2xy + y2

=> D = (x + y)2 = 12 = 1

6 tháng 10 2019

a) \(A=x^3+y^3+3xy\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)

\(=x^2-xy+y^2+3xy=x^2+2xy+y^2\)

\(=\left(x+y\right)^2=1^2=1\)

b) \(B=x^3-y^3-3xy\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)

\(=x^2+xy+y^2-3xy=x^2-2xy+y^2\)

\(=\left(x-y\right)^2=1^2=1\)

14 tháng 8 2019

1)a)x+y=60

<=>(x+y)^2=3600

<=>x^2+2xy+y^2=3600(1)

mà xy=35 nên 2xy=2.35=70

(1)<=>x^2+70+y^2=3600

<=>x^2+y^2=3530

<=>(x^2+y^2)^2=12460900

<=>x^4+2x^2.y^2+y^4=12460900(2)

mà xy=35 nên 2x.x.y.y=2450

(2)<=>x^4+y^4=123458450

 b)x+y=1

<=>(x+y)^3=1

<=>x^3+3x^2y+3xy^2+y^3=1

<=>x^3+y^3+3xy(x+y)=1

<=>x^3+y^3+3xy=1

=>M=1

x+y=1

<=>x^2+2xy+y^2=1(1)

B=x^3+y^3+3xy(x^2+y^2)+3xy(2xy)

=x^3+y^3+3xy(x^2+2xy+y^2)

=M.1=1(từ(1)

c)

x-y=1

<=>(x-y)^3=1

<=>x^3-3x^2y+3xy^2-y^3=1

<=>x^3-y^3-3xy(x-y)=1

<=>x^3-y^3-3xy=1

=>N=1

14 tháng 7 2017

Giải:

a) \(M=x^3-3xy\left(x-y\right)-y^3-x^2+2xy-y^2\)

\(\Leftrightarrow M=\left[x^3-3xy\left(x-y\right)-y^3\right]-\left(x^2-2xy+y^2\right)\)

\(\Leftrightarrow M=\left(x-y\right)^3-\left(x-y\right)^2\)

Thay \(x-y\) vào, được:

\(M=7^3-7^2=294\)

Vậy ...

b) \(N=x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)-95\)

\(\Leftrightarrow N=x^3+x^2-y^3+y^2+xy-3xy-3xy\left(x-y\right)-95\)

\(\Leftrightarrow N=x^3+x^2-y^3+y^2-2xy-3xy\left(x-y\right)-95\)

\(\Leftrightarrow N=\left[x^3-y^3-3xy\left(x-y\right)\right]+\left(x^2-2xy+y^2\right)-95\)

\(\Leftrightarrow N=\left(x-y\right)^3+\left(x-y\right)^2-95\)

Thay \(x-y\) vào, được:

\(N=7^3+7^2-95=297\)

Vậy ...

Chúc bạn học tốt!

19 tháng 10 2019

a ) có \(x^2+y^2+4x-2xy+4y+2019=\left(x-y\right)^2+4\left(x-y\right)+2019=49+28+2019=2096\)

b) \(x^3-3xy\left(x-y\right)-y^3-x^2+2xy-y^2=\left(x-y\right)^3-\left(x-y\right)^2=343-49=294\)

c)\(x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)=x^3-y^3+x^2+y^2+xy-3x^2y+3xy^2-3xy=\left(x-y\right)^3+\left(x-y\right)^2=343+49=392\)

11 tháng 7 2017

c)\(x^3+3xy+y^3\)

\(=x^3+y^3+3xy=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)

\(=\left(x^2-xy+y^2\right)+3xy\)

\(=x^2-xy+y^2+3xy\)

\(=x^2+2xy+y^2=\left(x+y\right)^2\)

\(=1^2=1\)

11 tháng 7 2017

d) \(x^3-3xy-y^3\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)

\(=\left(x^2+xy+y^2\right)-3xy\)

\(=x^2-2xy+y^2\)

\(=\left(x-y\right)^2\)

\(=1^2=1\)

@Đoàn Đức Hiếu lm a,b đi nhé