Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\widehat{A}+\widehat{ABC}+\widehat{C}=180^0\Rightarrow180^0-3\widehat{C}+\widehat{C}=180^0-70^0=110^0\)
\(\Rightarrow2\widehat{C}=70^0\Rightarrow\widehat{C}=35^0\Rightarrow\widehat{A}=180^0-3\cdot35^0=75^0\)
Ta có BE là p/g nên \(\widehat{B_1}=\widehat{B_2}=\dfrac{1}{2}\widehat{ABC}=35^0\)
Mà \(ED//BC\) nên \(\widehat{B_2}=\widehat{E_2}=35^0\left(so.le.trong\right)\left(1\right)\)
Ta có \(ED//BC\Rightarrow\widehat{E_1}=\widehat{C}=35^0\left(đồng.vị\right)\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\widehat{E_1}=\widehat{E_2}\left(=35^0\right)\)
Vậy ...
Hình bạn tự vẽ.
Đây là lời giải của mình :
Trước hết biết được góc A thì tính được \(\widehat{ABC}+\widehat{ACB}=180^o-\widehat{A}=80^o\)
\(\widehat{ACx}=\widehat{A}+\widehat{ABC}=100^o+\widehat{ABC}\) ( góc ngoài tam giác )
\(\Rightarrow\frac{\widehat{ACx}}{2}=\widehat{ACN}=50^o+\frac{\widehat{ABC}}{2}\)
Do đó \(\widehat{BCN}=\widehat{ACB}+\widehat{ACN}=50^o+\frac{\widehat{ABC}}{2}+\widehat{ACB}\)
BI là phân giác góc ABC nên \(\widehat{NBC}=\frac{\widehat{ABC}}{2}\)
Xét \(\Delta BCN:\)
\(\widehat{BNC}=180^o-\left(\widehat{NBC}+\widehat{BCN}\right)=180^o-\left(\frac{\widehat{ABC}}{2}+\frac{\widehat{ABC}}{2}+\widehat{ACB}+50^o\right)\)
\(=180^o-\left(\widehat{ACB}+\widehat{ABC}+50^o\right)=180^o-\left(80^o+50^o\right)=50^o\)
Vậy ...
a) Ta có: \(\widehat {PAM} = \widehat {QAN}\) ( 2 góc đối đỉnh) , mà \(\widehat {PAM} = 33^\circ \)nên \(\widehat {QAN} = 33^\circ \)
Vì \(\widehat {PAN} + \widehat {PAM} = 180^\circ \) ( 2 góc kề bù) nên \(\widehat {PAN} + 33^\circ = 180^\circ \Rightarrow \widehat {PAN} = 180^\circ - 33^\circ = 147^\circ \)
Vì \(\widehat {PAN} = \widehat {QAM}\)( 2 góc đối đỉnh) , mà \(\widehat {PAN} = 147^\circ \) nên \(\widehat {QAM} = 147^\circ \)
b)
Vì At là tia phân giác của \(\widehat {PAN}\) nên \(\widehat {PAt} = \widehat {tAN} = \frac{1}{2}.\widehat {PAN} = \frac{1}{2}.147^\circ = 73,5^\circ \)
Vì \(\widehat {tAQ} + \widehat {PAt} = 180^\circ \) ( 2 góc kề bù) nên \(\widehat {tAQ} + 73,5^\circ = 180^\circ \Rightarrow \widehat {tAQ} = 180^\circ - 73,5^\circ = 106,5^\circ \)
Vẽ At’ là tia đối của tia At, ta được \(\widehat {QAt'} = \widehat {PAt}\)( 2 góc đối đỉnh)
Ta có: \(\widehat {QAt'} = \widehat {MAt'} = \frac{1}{2}.\widehat {MAQ}\) nên At’ là tia phân giác của \(\widehat {MAQ}\)
Chú ý:
2 tia phân giác của 2 góc đối đỉnh là 2 tia đối nhau
\(a)d\perp m,ab\perp m\Leftrightarrow d//ab\)( từ vuông góc đến song song)
\(b)\widehat{ABA}=60^0\)( câu này bạn tự tính )
\(c)\widehat{HBA}=\frac{\widehat{ABa}}{2}=\frac{120^0}{2}=60^0\)và \(\widehat{HAB}=60^0\)
\(\Rightarrow\widehat{AHB}=60^0\)
\(d)\)Vì Ba là tia đối của BN nên \(\widehat{ABA},\widehat{CBN}\)là 2 góc đối nhau nên 2 tia phân giác của nó đối nhau hay BH và Bt đối nhau
ài 1 a)như hình vẽ ta thấy góc A= góc B=90° => a//b( vì có 2 góc so le trong bằng nhau) b) vì a//b nên D1=E2=60°( hai góc đồng vị) Mà E1+E2=180°=> E1=180-60=130°
Kẻ tia CxCx là tia phân giác của ˆACDACD^ và DyDy là tia phân giác của ˆBDCBDC^, hai tia CxCx và DyDy cắt nhau tại EE.
ˆC1=ˆC2=60∘C1^=C2^=60∘ và ˆD1=ˆD2=30∘D1^=D2^=30∘
Kẻ tia Ez//m//nEz//m//n, tính ˆE1=60∘E1^=60∘ và ˆE2=30∘E2^=30∘
Suy ra ˆCED=90∘CED^=90∘.
Kẻ tia CxCx là tia phân giác của \widehat{A C D}ACD và DyDy là tia phân giác của \widehat{B D C}BDC, hai tia CxCx và DyDy cắt nhau tại EE.
\widehat{C_1}=\widehat{C_2}=60^{\circ}C1=C2=60∘ và \widehat{D_1}=\widehat{D_2}=30^{\circ}D1=D2=30∘
Kẻ tia Ez / / m // nEz//m //n, tính \widehat{E_1}=60^{\circ}E1=60∘ và \widehat{E_2}=30^{\circ}E2=30∘
Suy ra \widehat{CED}=90^{\circ}CED=90∘.