Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+\frac{1}{1.3}\right)+\left(a+\frac{1}{3.5}\right)+...+\left(a+\frac{1}{23.25}\right)=11a+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)\)
\(\Rightarrow12a+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\right)=11a+\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\right)\)(1)
Ta có \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{23.25}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{23}-\frac{1}{25}\right)=\frac{1}{2}\left(1-\frac{1}{25}\right)=\frac{1}{2}.\frac{24}{25}=\frac{12}{25}\)
Lại có \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}=\frac{3\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\right)}{2}\)
\(=\frac{1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}-\frac{1}{3}-\frac{1}{3^2}-\frac{1}{3^3}-\frac{1}{3^4}-\frac{1}{3^5}}{2}=\frac{1-\frac{1}{3^5}}{2}=\frac{1}{2}-\frac{1}{3^5.2}\)
Khi đó (1) <=> \(12a-\frac{12}{25}=11a+\frac{1}{2}-\frac{1}{3^5.2}\)
=> \(a=\frac{12}{25}+\frac{1}{2}-\frac{1}{3^5.2}=\frac{49}{50}-\frac{1}{3^5.2}=\frac{49}{50}-\frac{1}{486}=\frac{23764}{24300}\)
Gọi \(A=\left(a+\frac{1}{1.3}\right)+\left(a+\frac{1}{3.5}\right)+\left(a+\frac{1}{5.7}\right)+...+\left(a+\frac{1}{23.25}\right)\)
\(\Rightarrow A=12a+\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{23.25}\right)\)
\(\Rightarrow A=12a+\left[\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{23.25}\right)\right]\)
\(\Rightarrow A=12a+\left[\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{23}-\frac{1}{25}\right)\right]\)
\(\Rightarrow A=12a+\left[\frac{1}{2}\left(1-\frac{1}{25}\right)\right]\)
\(\Rightarrow A=12a+\left(\frac{1}{2}.\frac{24}{25}\right)\)
\(\Rightarrow A=12a+\frac{12}{25}\)
Gọi \(B=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(\Rightarrow B=\frac{1}{1.3}+\frac{1}{3.3}+\frac{1}{9.3}+\frac{1}{27.3}+\frac{1}{81.3}\)
\(\Rightarrow3B=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}\)
\(\Rightarrow3B-B=1-\frac{1}{243}\)
\(\Rightarrow2B=\frac{242}{243}\)
\(\Rightarrow B=\frac{121}{243}\)
\(\Rightarrow A=11a+B\)
\(\Rightarrow12a+\frac{12}{25}=11a+\frac{121}{243}\)
\(\Leftrightarrow12a-11a=\frac{121}{243}-\frac{12}{25}\)
\(\Leftrightarrow a=\frac{109}{6075}\)
(1 - 1/1+2).(1 - 1/1+2+3)...(1 - 1/1+2+3+...+2016)
= 2/(1+2)×2:2 . 5/(1+3)×3:2 ... (1+2016)×2016:2-1/(1+2016).2016:2
= 4/2×3 . 10/3×4 ... (2017.1008-1).2/2016.2017
= 1×4/2×3 . 2×5/3×4 ... 2015×2018/2016×2017
= 1×2×...×2015/2×3×...×2016 . 4×5×...×2018/3×4×...×2017
= 1/2016 . 2018/3
= 1009/3024
1 nha bạn
nhớ k cho mình nha
:)
mình nói đùa thôi không phải 1 đâu :V
1.Gấp 2 lần tổng kia lên,có nghĩa nhân 2 với mỗi phân số.
2.Tách ra làm hiệu như bình thường giống 1 phần 1 nhân 2.
3.Hủy những số đối nhau.
4.Tính phép tính cuối cùng.
5.Chia kết quả cho 2.
Học tốt^^
1.Gấp 2 lần tổng kia lên,có nghĩa nhân 2 với mỗi phân số.
2.Tách ra làm hiệu như bình thường giống 1 phần 1 nhân 2.
3.Hủy những số đối nhau.
4.Tính phép tính cuối cùng.
5.Chia kết quả cho 2.
Học tốt^^
\(A=\left(1-\frac{1}{2^1}\right)+\left(1-\frac{1}{2^2}\right)+\left(1-\frac{1}{2^3}\right)+...+\left(1-\frac{1}{2^9}\right)+\left(1-\frac{1}{2^{10}}\right)\)
\(A=\left(1+1+1+...+1+1\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\right)\)
10 số 1
\(A=10-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\right)\)
Đặt \(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\)
\(2B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}+\frac{1}{2^9}\)
\(2B-B=1-\frac{1}{2^{10}}=B\)
=> \(A=10-\left(1-\frac{1}{2^{10}}\right)\)
=> \(A=10-1+\frac{1}{2^{10}}\)
=> \(A=9\frac{1}{1024}\)