Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
$A=(1+5+5^2)+(5^3+5^4+5^5)+...+(5^{2016}+5^{2017}+5^{2018})$
$=(1+5+5^2)+5^3(1+5+5^2)+....+5^{2016}(1+5+5^2)$
$=(1+5+5^2)(1+5^3+...+5^{2016})$
$=31(1+5^3+...+5^{2016})\vdots 31$ (đpcm)
Câu 2:
$2x+7\vdots 2x-2$
$\Rightarrow (2x-2)+9\vdots 2x-2$
$\Rightarrow 9\vdots 2x-2$
$\Rightarrow 2x-2$ là ước của $9$
Mà $2x-2$ là số chẵn với mọi $x$ nguyên, còn $Ư(9)\in \left\{\pm 1; \pm 3; \pm 9\right\}$ (không có ước nào chẵn)
$\Rightarrow$ không tồn tại $x$ nguyên thỏa mãn yêu cầu đề bài.
3, 2x - 7 chia hết cho x - 2
Mà x - 2 chia hết cho x - 2 => 2(x - 2) chia hết cho x - 2
=> (2x - 7) - 2(x - 2) chia hết cho x - 2
=> 2x - 7 - 2x + 2 chia hết cho x - 2
=> 9 chia hết cho x - 2
=> x - 2 thuộc {1; -1; 3; -3; 9; -9}
=> x thuộc {3; 1; 5; -1; 11; -7}
Vậy...
1, x + 5 chia hết cho x + 2
=> x + 2 + 3 chia hết cho x + 2
=> 3 chia hết cho x + 2 (Vì x + 2 chia hết cho x + 2)
=> x + 2 thuộc {1; -1; 3; -3}
=> x thuộc {-1; -3; 1; -5}
Vậy...
2, x - 3 chia hết cho x + 2
=> x + 2 - 5 chia hết cho x + 2
=> 5 chia hết cho x + 2
=> x + 2 thuộc {1; -1; 5; -5}
=> x thuộc {-1; -3; 3; -7}
Vậy...
Bạn chỉ gửi 1 bài thôi chứ nhiều quá làm mỏi tay lắm
Làm bài 1 trước
\(4\cdot(-5)^2+2\cdot(-5)-20\)
\(=4\cdot25+2\cdot(-5)-20\)
\(=100+(-10)-20=100-30=70\)
\(35\cdot(14-10)-14\cdot(35-10)\)
\(=35\cdot14-35\cdot10-14\cdot35-14\cdot10\)
\(=35\cdot14-14\cdot35-35\cdot10-14\cdot10\)
\(=35\cdot10-14\cdot10=(35-14)\cdot10=210\)
\(3\cdot(-5)^2+2\cdot(-5)-20\)
Tương tự như ở câu trên
\(34\cdot(15-10)-15\cdot(34-10)\)
Tương tự như câu thứ 2
Câu cuối tự làm
a,
Vì -4 chia hết cho x-5
=> x-5 thuộc Ư(-4)
Ta có: Ư(-4) = {+_1 ; +_2 ; +_4}
=> x-5 thuộc {+_1 ; +_2 ; +_4}
=> x thuộc {6;4;7;3;9;1}
Vậy ....
b,
x-3 chia hết cho x+1
=> x+1-4 chia hết cho x+1
Mà x+1 chia hết cho x+1
=> 4 chia hết cho x+1
=> x+1 thuộc Ư(4)
Ta có: Ư(4) = {+_1 ; +_2 ; +_4}
=> x+1 thuộc {+_1 ; +_2 ; +_4}
=> x thuộc {0;-2;1;-3;3;-5}
Vậy ....
c,
2x-6 chia hết cho 2x+2
=> 2x+2-8 chia hết cho 2x+2
Mà 2x+2 chia hết cho 2x+2
=> 8 chia hết cho 2x+2
=> 2x+2 thuộc Ư(8)
Ta có: Ư(8) = {+_1 ; +_2 ; +_4 ; +_8}
=> 2x+2 thuộc {+_1 ; +_2 ; +_4 ; +_8}
=> 2x thuộc {-1;-3;0;-4,2;-6;6;-10}
=> x thuộc {-0.5;-1.5;0;-2;1;-3;3;-5}
Vậy ...
a) x+6 \(⋮\)x
\(\Leftrightarrow\)6 \(⋮\) x (vì muốn tổng chia hết thì từng số hạng phải chia hết, mà x chia hết cho x)
\(\Leftrightarrow\) x\(\in\)Ư(6) ={1: -1: 2: -2: 3; -3: 6: -6}
tương tự câu b) thì x \(\in\)Ư(5) ={_1, 1, 5, -5}
c)thì 2x+1=2x+2-1=2(x+1)-1
vì 2(x+1) chia hết cho x+1 nên -1 chia hết cho x+1
=>x+1 \(\in\)Ư(-1)={1, -1}
=>x \(\in\){0,-2}
Ta có x+6 chia hết cho x
suy ra x+6-x chia hết cho x
6 chia hết cho x suy ra x thuộc Ư(6)
Vậy x thuộc{-1;1;-2;2;-3;3;6;-6}
2x + 5 chia hết cho x + 1
=> 2x + 2 + 3 chia hết cho x + 1
=> 2(x + 1) + 3 chia hết cho x + 1
Có 2(x + 1) chia hết cho x + 1
=> 3 chia hết cho x + 1
=> x + 1 thuộc Ư(3)
=> x + 1 thuộc {1; -1; 3; -3}
=> x thuộc {0; -2; 2; -4}
2x + 5 chia hết cho x + 1
=> 2x + 2 + 3 chia hết cho x + 1
=> 2.(x + 1) + 3 chia hết cho x + 1
Do 2.(x + 1) chia hết cho x + 1 => 3 chia hết cho x + 1
=> \(x+1\in\left\{1;-1;3;-3\right\}\)
=> \(x\in\left\{0;-2;2;-4\right\}\)