Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta co p = 30k+r = 2.3.5k+r (k,r € N ; 0<r<30)
vi p la so nguyen to nen r khong chia het cho ca 2,3,5
cac so khong phai hop so nho hon 30 va khong chia het cho 2 la {1;3;5;7;9;11;13;15;17;21;19;23;27;29} va r khong phai la so nguyen to
=> r = 1!
1) Gọi số nguyên tố đó là n, ta có n=30k+r (r<30, r nguyên tố)
Vì n là số nguyên tố nên r không thể chia hết cho 2,3,5
Nếu r là hợp số không chia hết cho 2,3,5 thì r nhỏ nhất là 7*7 = 49 không thỏa mãn
Vậy r cũng không thể là hợp số
Kết luận: r=1
2)a) Tổng của ba hợp số khác nhau nhỏ nhất bằng :
4 + 6 + 8 = 18.
b) Gọi 2k+1 là một số lẻ bất kỳ lớn hơn 17. Ta luôn có 2k+1=4+9+(2k−12).
Cần chứng minh rằng 2k−12 là hợp số chẵn (hiển nhiên) lớn hơn 4 (dễ chứng minh).
+ Với p = 2 thì p + 2 = 2 + 2 = 4, không là số nguyên tố, loại
+ Với p = 3 thì p + 2 = 3 + 2 = 5; p + 4 = 3 + 4 = 7, đều là số nguyên tố, chọn
+ Với p > 3, do p nuyên tố nên p = 3k + 1 hoặc p = 3k + 2 (k thuộc N*)
Nếu p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3.(k + 1) chia hết cho 3
Mà 1 < 3 < p + 2 => p + 2 là hợp số, loại
Nếu p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3.(k + 2) chia hết cho 3
Mà 1 < 3 < p + 4 => p + 4 là hộp số, loại
Vậy p = 3
+ Với p = 2 thì p + 2 = 2 + 2 = 4, không là số nguyên tố, loại
+ Với p = 3 thì p + 2 = 3 + 2 = 5; p + 4 = 3 + 4 = 7, đều là số nguyên tố, chọn
+ Với p > 3, do p nuyên tố nên p = 3k + 1 hoặc p = 3k + 2 (k thuộc N*)
Nếu p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3.(k + 1) chia hết cho 3
Mà 1 < 3 < p + 2 => p + 2 là hợp số, loại
Nếu p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3.(k + 2) chia hết cho 3
Mà 1 < 3 < p + 4 => p + 4 là hộp số, loại
Vậy p = 3
a)A=2;3;5;7
b)Tổng của các số trên là một số nguyên tố.Nó là 17.
Tick mình nha bạn huynhngocgialinh.
p và 2p+1 nguyên tố
* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố
* xét p # 3
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3)
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3
kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3