K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Delta\)BEC = \(\Delta\)CDB (g.c.g)

=> Góc B = góc C 

Vậy tứ giác BEDC có 2 góc kề 1 dáy nên là hình thang cân

:) hình như sai đề bằng cạnh bên mới đúng

13 tháng 9 2015

Bạn vào

Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

26 tháng 10 2022

a: Xét ΔADB và ΔAEC có

góc BAD chung

AB=AC

góc ABD=góc ACE

Do đó: ΔADB=ΔAEC

b: Xét ΔABC có AE/AB=AD/AC

nên ED//BC

=>BEDC là hình thang

mà góc EBC=góc DCB

nên BEDC là hình thang cân

Xét ΔEDB có góc EDB=góc EBD(=góc DBC)

nên ΔEDB cân tại E

=>BE=ED=DC

21 tháng 6 2019

Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

- Chứng minh tứ giác BCDE là hình thang cân:

+ ΔABC cân tại A Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

BD là phân giác của Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

CE là phân giác của Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

+ Xét ΔAEC và ΔADB có:

Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

⇒ ΔAEC = ΔADB

⇒ AE = AD

Vậy tam giác ABC cân tại A có AE = AD

Theo kết quả bài 15a) suy ra BCDE là hình thang cân.

- Chứng minh ED = EB.

ED // BC ⇒ Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8 (Hai góc so le trong)

Mà Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8 ⇒ ΔEDB cân tại E ⇒ ED = EB.

Vậy ta có EBCD là hình thang cân có đáy nhỏ bằng cạnh bên.

31 tháng 10 2016

mi sao ngu thế! middusng là ngu thật

28 tháng 7 2017

đúng là ngu thật dễ thế mà không ra

30 tháng 7 2021
5m3 25dm3=?
30 tháng 7 2021

BC=80 

SA23

31 tháng 10 2016

8iu9liu84l89iul8ui4

7 tháng 7 2020

E D A B C 1 2 1 2 1

- Chứng minh tứ giác BCDE là hình thang cân:

+ \(\Delta ABC\)cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)

BD là tia phân giác của \(\widehat{B}\Rightarrow\widehat{B_1}=\widehat{B_2}=\frac{1}{2}.\widehat{ABC}\)

CE là tia phân giác của \(\widehat{C}\Rightarrow\widehat{C_1}=\widehat{C_2}=\frac{1}{2}.\widehat{ACB}\)

\(\Rightarrow\widehat{B_1}=\widehat{B_2}=\widehat{C_1}=\widehat{C_2}\)

+) Xét 2 tam giác : AEC và ADB , có :

\(\widehat{A}\)chung

AB = AC

\(\widehat{C_1}=\widehat{B_1}\)

\(\Rightarrow\Delta AEC=\Delta ADB\left(g.c.g\right)\)

=> AE = AD ( 2 cạnh tương ứng )

Ta có : AD = AE ( cmt ) nên tam giác ADE cân tại A ( dấu hiệu nhận biết tam giác cân )

\(\Rightarrow\widehat{AED}=\widehat{ADE}\)( tính chất tam giác cân )

Xét tam giác ADE , ta có :

\(\widehat{AED}+\widehat{ADE}+\widehat{A}=180^o\)( định lý tổng 3 góc trong tam giác )

\(\Rightarrow2\widehat{AED}+\widehat{A}=180^o\)

\(\Rightarrow\widehat{AED}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)

Xét tam giác ABC , ta có :

\(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^o\)( định lý tổng 3 góc trong tam giác )

Mà \(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)

\(\Rightarrow2\widehat{ABC}+\widehat{A}=180^o\)

\(\Rightarrow\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\widehat{AED}=\widehat{ABC}\), mà hai góc này là hai góc đồng vị nên suy ra DE // BC ( dấu hiệu nhận biết hai đường thẳng song song )

Do đó BEDC là hình thang (dấu hiệu nhận biết hình thang).

Lại có\(\widehat{ABC}=\widehat{ACB}\)  (chứng minh trên)

Nên BEDC là hình thang cân (dấu hiệu nhận biết hình thang cân)

Ta có:

DE // BC => \(\widehat{D_1}=\widehat{B_2}\) (so le trong)

Lại có \(\widehat{B_2}=\widehat{B_1}\) ( cmt ) nên \(\widehat{B_1}=\widehat{D_1}\)

\(\Rightarrow\Delta EBD\) cân tại E (dấu hiệu nhận biết tam giác cân)

=> EB = ED ( tính chất tam giác cân )

Vậy BEDC là hình thang cân có đáy nhỏ bằng cạnh bên.

22 tháng 7 2017

ABCED

Ta có : tam giác ABC cân tại A

          BD là phân giác của góc  ABC

          CE là phân giác của góc ACB

=>BD=CE (trong tam giác cân 2 đường phân giác xuất phát từ 2 góc đáy của tam giác bằng nhau . p/s: nếu bạn k bik định lí này bạn có thể chứng minh nhé)

Xét tam giác ABD và tam giác ACE :

 BD=CE (cmt)

góc ABD= góc ACE (góc ABC=góc ACB=2 góc ABD= 2 góc ACE)

AB=BC (tam giác ABC cân tại A)

Suy ra: tam giác ABD= tam giác ACE (c-g-c)

=>AD=AE ( 2 cạnh tương ứng)

=>tam giác ADE cân tại A

Mà tam giác ABC cũng cân tại A nên:

góc ABC = góc ACB= góc ADE= goác ADE

Ta lại có: góc ABC và góc AED ở vị trí đồng vị nên:

ED//BC

=>BEDC là hình thang 

Mà BD=CE 

nên: BEDC là hình thang cân(1)

Ta có: ED//BC => góc DEC = góc ECB

Mà góc ECB= góc DCE ( CE là p/g của góc ACE)

=> góc DEC=góc DCE

=> tam giác DEC cân tại D

=>ED=DC (2)

Từ (1) và (2) suy ra: BEDC là hình thang cân có đáy nhò bằng cạnh bên.

Bài b ko biết hi hi k mình ra

 
 
22 tháng 7 2017

Tiếp câu b .

Có : \(\Delta ABC\) cân tại A

=> \(\widehat{ABC}=\widehat{ACB}\)         (1)

Theo tổng 3 góc trong 1 tam giác :

Với \(\Delta ABC\) => \(\widehat{ABC}+\widehat{ACB}+\widehat{A}=180^0\)

=> \(\widehat{ABC}+\widehat{ACB}=130^0\)

Lại có (1) 

=> \(\widehat{ABC}=\widehat{ACB}=\frac{130^0}{2}=65^0\)

Vì tứ giác là hình thang cân (chắc cũng biết tứ giác nào nhỉ :v )

=> ED // BC

=> \(\widehat{DEB}+\widehat{EBC}=180^0\)

=> \(\widehat{DEB}=180^0-65^0=115^0\)

Tương tự với góc \(\widehat{EDC}\)

23 tháng 8 2021

Ta có : tam giác ABC cân tại A

          BD là phân giác của góc  ABC

          CE là phân giác của góc ACB

=>BD=CE (trong tam giác cân 2 đường phân giác xuất phát từ 2 góc đáy của tam giác bằng nhau . p/s: nếu bạn k bik định lí này bạn có thể chứng minh nhé)

Xét tam giác ABD và tam giác ACE :

 BD=CE (cmt)

góc ABD= góc ACE (góc ABC=góc ACB=2 góc ABD= 2 góc ACE)

AB=BC (tam giác ABC cân tại A)

Suy ra: tam giác ABD= tam giác ACE (c-g-c)

=>AD=AE ( 2 cạnh tương ứng)

=>tam giác ADE cân tại A

Mà tam giác ABC cũng cân tại A nên:

góc ABC = góc ACB= góc ADE= goác ADE

Ta lại có: góc ABC và góc AED ở vị trí đồng vị nên:

ED//BC

=>BEDC là hình thang 

Mà BD=CE 

nên: BEDC là hình thang cân(1)

Ta có: ED//BC => góc DEC = góc ECB

Mà góc ECB= góc DCE ( CE là p/g của góc ACE)

=> góc DEC=góc DCE

=> tam giác DEC cân tại D

=>ED=DC (2)

Từ (1) và (2) suy ra: BEDC là hình thang cân có đáy nhò bằng cạnh bên.

Hok tốt ! Nếu thấy đúng thì k cho mìn !