Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=>2x\(\sqrt{x^2+4}\)+2\(\sqrt{x^2+4}\)=x\(^2\)-x-2
=>2x\(\sqrt{x^2+4}\)+2\(\sqrt{x^2+4}\)-x2+x+2=0
=>(x+1)(2\(\sqrt{x^2+4}\)-x+2)=0
=>2\(\sqrt{x^2+4}\)-x+2=0
=>x=-1
2) Do \(\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}=2\\\)\(\Rightarrow\dfrac{1}{a+1}=2-\left(\dfrac{1}{b+1}+\dfrac{1}{c+1}\right)\)
=\(\dfrac{b}{b+1}+\dfrac{c}{c+1}\)
Áp dụng BĐT AM-GM ta có
\(\dfrac{1}{a+1}=\dfrac{b}{b+1}+\dfrac{c}{c+1}\) \(\ge\)\(2\sqrt{\dfrac{bc}{\left(b+1\right)\left(c+1\right)}}\)
Tương tự ta được
\(\dfrac{1}{b+1}\ge2\sqrt{\dfrac{ca}{\left(c+1\right)\left(a+1\right)}}\)
\(\dfrac{1}{c+1}\ge2\sqrt{\dfrac{ab}{\left(a+1\right)\left(b+1\right)}}\)
Nhân vế theo vế của 3 BĐT cùng chiều ta được
\(\dfrac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)\(\ge\dfrac{8abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)
\(\Rightarrow abc\le\dfrac{1}{8}\)
Đẳng thức xảy ra\(\Leftrightarrow a=b=c=\dfrac{1}{2}\)
1/ \(\sqrt{2x-1+2\sqrt{2x-1}+1}+\sqrt{2x-1-2\sqrt{2x-1}+1}\)
\(=\sqrt{\left(\sqrt{2x-1}+1\right)^2}+\sqrt{\left(\sqrt{2x-1}-1\right)^2}\)
\(=\left|\sqrt{2x-1}+1\right|+\left|\sqrt{2x-1}-1\right|\)
\(=\sqrt{2x-1}+1+1-\sqrt{2x-1}\)
\(=2\)
2/ ĐKXĐ: \(a^2-1\ge0\Rightarrow a^2\ge1\Rightarrow\left[{}\begin{matrix}a\ge1\\a\le-1\end{matrix}\right.\)
3/ \(4\left|x\right|-\sqrt{\left(5x-1\right)^2}=4\left|x\right|-\left|5x-1\right|\)
\(=4x-\left(5x-1\right)=1-x\)
4/ \(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}< \sqrt{7}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge0\\x< 7\end{matrix}\right.\) \(\Rightarrow0\le x< 7\)
5/ \(M=\sqrt{3-2\sqrt{2.3}+2}=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
\(=\left|\sqrt{3}-\sqrt{2}\right|=\sqrt{3}-\sqrt{2}\)
6/ \(\left|x\right|-\sqrt{\left(x-1\right)^2}=\left|x\right|-\left|x-1\right|=x-\left(x-1\right)=1\)
1.
\(\sqrt{2x+2\sqrt{2x-1}}+\sqrt{2x-2\sqrt{2x-1}}\)
\(=\sqrt{2x-1+2\sqrt{2x-1}+1}+\sqrt{2x-1-2\sqrt{2x-1}+1}\)
\(=\sqrt{\left(\sqrt{2x-1}+1\right)^2}+\sqrt{\left(\sqrt{2x-1}-1\right)^2}\)
\(=\left|\sqrt{2x-1}+1\right|+\left|\sqrt{2x-1}-1\right|\)
\(=\sqrt{2x-1}+1+1-\sqrt{2x-1}=2\)
2.
\(\sqrt{a^2-1}\text{ xác định }\Leftrightarrow a^2-1\ge0\)
\(\Leftrightarrow\left(a-1\right)\left(a+1\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a-1\ge0\\a+1\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}a-1\le0\\a+1\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a\ge1\\a\le-1\end{matrix}\right.\)
3.
\(4\left|x\right|-\sqrt{1+25x^2-10x}\)
\(=4\left|x\right|-\sqrt{\left(5x-1\right)^2}\)
\(=4\left|x\right|-\left|5x-1\right|\)
\(=4x-5x+1=1-x\)
4.
ĐKXĐ: \(x\ge0\)
\(-\sqrt{x}>-\sqrt{7}\)
\(\Leftrightarrow\sqrt{x}< \sqrt{7}\)
\(\Leftrightarrow\text{ }x< 7\)
Vậy bât phương trình có nghiệm \(0\le x< 7\)
5.
\(\sqrt{5-2\sqrt{6}}=\sqrt{2-2\sqrt{2}.\sqrt{3}+3}\)
\(=\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}\)
\(=\sqrt{3}-\sqrt{2}\)
6.
\(\left|x\right|-\sqrt{1-2x+x^2}\)
\(=\left|x\right|-\sqrt{\left(1-x\right)^2}\)
\(=\left|x\right|-\left|x-1\right|\)
\(=x-x+1=1\)
câu a trục căn nhân với cái như phần tử hả ? câu b thì biết làm rồi.
Nghĩ đc bài nào làm bài đấy ^^
\(\text{1)}\sqrt{x^2+x-3}=x+m\)\(\text{(ĐKXĐ: }x^2+x-3\ge0\)\(\text{)}\)
\(\Leftrightarrow x^2+x-3=x^2+2mx+m^2\)
\(\Leftrightarrow x-2mx=m^2+3\)
\(\Leftrightarrow x\left(1-2m\right)=m^2+3\)(1)
*Nếu 1 - 2m = 0 thì \(m=\frac{1}{2}\)
Khi đó pt (1) \(\Leftrightarrow0x=\frac{1}{4}+3\)
Pt vô nghiệm
*Nếu 1 - 2m \(\ne\)0 thì \(m\ne\frac{1}{2}\)
Khi đó pt (1) có nghiệm duy nhất \(x=\frac{m^2+3}{1-2m}\)
Kết hợp ĐKXĐ \(x^2+x-3\ge0\)
\(\Leftrightarrow\frac{\left(m^2+3\right)^2}{\left(1-2m\right)^2}+\frac{m^2+3}{1-2m}-3\ge0\)
Đến đây quy đồng lên được điều kiện của m và kết hợp m khác 1/2
=> KL
2) ĐKXĐ : -1 < x < 8
Đặt \(\sqrt{1+x}+\sqrt{8-x}=a\ge0\)
\(\Rightarrow a^2=9+2\sqrt{\left(1+x\right)\left(8-x\right)}\)
\(\Rightarrow\sqrt{\left(1+x\right)\left(8-x\right)}=\frac{a^2-9}{2}\)
Khi đó \(a+\frac{a^2-9}{2}=m\)
\(\Leftrightarrow2a+a^2-9=2m\)
\(\Leftrightarrow a^2+2a-9-2m=0\)(1)
Xét \(\Delta'=1-\left(-9-2m\right)=10+2m\)
Pt có nghiệm \(\Leftrightarrow\Delta'\ge0\Leftrightarrow m\ge-5\)
Từ (1) \(\Rightarrow a^2+2a-9=2m\ge2\left(-5\right)=-10\)
\(\Leftrightarrow a^2+2a-9\ge-10\)
\(\Leftrightarrow a^2+2a+1\ge0\)
\(\Leftrightarrow\left(a+1\right)^2\ge0\)(Luôn đúng)
Vậy *với m> -5 thì pt có vô số nghiệm nằm trong khoảng -1 < x < 8
* với m < -5 thì pt vô nghiệm
P/S: chả bt cách này đúng ko nx =.='
ĐKXĐ: \(x\ge0;x\ne4;9\)
\(P=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right):\left(\frac{2\left(\sqrt{x}+1\right)-\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\left(\frac{\sqrt{x}+2+x-9-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right):\left(\frac{\sqrt{x}+2}{\sqrt{x}+1}\right)=\frac{\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}.\frac{\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}+1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}+1}{x-4}\)
\(\frac{1}{P}\le-\frac{5}{2}\Leftrightarrow\frac{1}{P}+\frac{5}{2}\le0\Leftrightarrow\frac{x-4}{\sqrt{x}+1}+\frac{5}{2}\le0\)
\(\Leftrightarrow\frac{2x+5\sqrt{x}-3}{2\left(\sqrt{x}+1\right)}\le0\Leftrightarrow2x+5\sqrt{x}-3\le0\)
\(\Leftrightarrow\left(\sqrt{x}+3\right)\left(2\sqrt{x}-1\right)\le0\Leftrightarrow2\sqrt{x}-1\le0\)
\(\Rightarrow\sqrt{x}\le\frac{1}{2}\Rightarrow0\le x\le\frac{1}{4}\)
Ta có: \(x+\sqrt{x^2+m^2}=\frac{\left(x+\sqrt{x^2+m^2}\right)\left(\sqrt{x^2+m^2}-x\right)}{\sqrt{x^2+m^2}-x}=\frac{\left(x^2+m^2\right)-x^2}{\sqrt{x^2+m^2}-x}=\frac{m^2}{\sqrt{x^2+m^2}-x}\)
Biểu thức trên luôn xác định vì \(\sqrt{x^2+m^2}-x>\sqrt{x^2}-x=\left|x\right|-x\ge0\forall m\ne0.\)
\(bpt\Leftrightarrow\frac{2m^2}{\sqrt{x^2+m^2}-x}\le\frac{5m^2}{\sqrt{x^2+m^2}}\Leftrightarrow\frac{2}{\sqrt{x^2+m^2}-x}\le\frac{5}{\sqrt{x^2+m^2}}\text{ }\left(do\text{ }m\ne0\right)\)
\(\Leftrightarrow2\sqrt{x^2+m^2}\le5\left(\sqrt{x^2+m^2}-x\right)\text{ }\left(do\text{ }\sqrt{x^2+m^2}\right)-x>0\)
\(\Leftrightarrow3\sqrt{x^2+m^2}\ge5x\text{ }\left(1\right)\)
\(+TH1:x\le0\)
(1) luôn đúng vì \(VT\ge0\ge VP\)
\(+TH2:x>0\)
\(\left(1\right)\Leftrightarrow9\left(x^2+m^2\right)\le25x^2\Leftrightarrow x^2\le\frac{9m^2}{16}\)
\(\Leftrightarrow-\frac{3}{4}\left|m\right|\le x\le\frac{3}{4}\left|m\right|\)
Do \(x>0\) nên chỉ nhận \(0< x\le\frac{3}{4}\left|m\right|\)
Kết hợp 2 trường hợp, ta được \(x\le\frac{3}{4}\left|m\right|\)
mọi người giúp vs