K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tổng các hệ số là:
A(1)=(3-4+1)^2004*(3+4+1)^2005=0

12 tháng 6 2021

\(A\left(x\right)=\left(3-4+x^2\right)^{2004}\left(3+4x+x^2\right)^{2005}\)

Đa thức `A(x)` sau khi bỏ dấu ngoặc:

\(A\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0\)

Với `n = 2 . 2004 + 2 . 2005 = 8018`

Ta thay `x = 1` thì \(A\left(1\right)=a_n+a_{n-1}+...+a_1+a_0\)

`=> A(1)` là tổng các hệ số của `A(x)` khi bỏ dấu ngoặc

Ta có: \(A\left(1\right)=\left(3-4.1+1^2\right)^{2004}\left(3+4.1+1^2\right)^{2005}\)

\(=0^{2004}.8^{2005}=0\)

Vậy tổng các hệ số của đa thức `A(x)` nhận được sau khi bỏ dấu ngoặc là `0`

12 tháng 6 2021

vì sao lại có anxn+an-1xn01 thế

18 tháng 3 2017

Ủa? ngonhuminh sao không đưa ra lời giải cụ thể vậy?

Giải:

Đặt \(P\left(x\right)=\left(3-4x+x^2\right)^{2006}.\left(3+4x+x^2\right)^{2007}\)

Sau khi bỏ dấu ngoặc trong \(P\left(x\right)\) ta thu được đa thức \(P\left(x\right)\) có dạng:

\(P\left(x\right)=a_n.x^n+a_{n-1}.x^{n-1}+a_{n-2}.x^{n-2}+...+a_1.x+a_0\)

Khi đó tổng các hệ số của \(P\left(x\right)\) là:

\(a_n+a_{n-1}+a_{n-2}+...+a_1+a_0\)

Mà: \(P\left(1\right)=a_n+a_{n-1}+a_{n-2}+...+a_1+a_0\)

\(\Rightarrow\) Tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc là:

\(P\left(x\right)=P\left(1\right)=\left(3-4.1+1^2\right)^{2006}.\left(3+4.1+1^2\right)^{2007}=0\)

Vậy tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc là \(0\)

18 tháng 3 2017

0

4 tháng 4 2020

- Tổng các hệ số của 1 đa thức tại x = 1 .

Nên tổng hệ số của đa thức x là :

\(\left(3-1.4+1\right)^{2006}.\left(3+4.1+1\right)^{2007}=0.0=0\)

Vậy tổng hệ số của đa thức trên là 0.

Tổng các hệ số của một đa thức P(x) bất kì bằng giá trị cua đa thức đó tại x=1.

Vậy tổng các hệ số của đa thức:

\(P\left(x\right)=\left(3-4x+x^2\right)^{2006}.\left(3+4x+x^2\right)^{2007}\)

Bằng \(P\left(1\right)=\left(3-4+1\right)^{2006}.\left(3+4+1\right)^{2007}=0\)

Bài 6:

Tổng các hệ số của đa thức A(x) khi khai triển sẽ bằng với giá trị của A(x) khi x=1

=>Tổng các hệ số khi khai triển là:

\(A\left(1\right)=\left(3-4+1\right)^{2004}\cdot\left(3+1+1\right)^{2005}=0\)

 

4 tháng 9 2023

cảm on vui