Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ 0, 71
2/ Tương tự 2 câu 1, 3 nhé!
3/ 11,25
Tick đúng nha! Thanks!
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
\(A=x^2-6x+3\)
\(=\left(x^2-6x+9\right)-6\)
\(=\left(x+3\right)^2-6\)
ma \(\left(x+3\right)^2\ge0\Leftrightarrow\left(x+3\right)^2-6\ge-6\)
vậy gtnn của A là -6 tại x=-3
\(B=x^2+3x+7=\left(x^2+2.\frac{3}{2}x+\frac{9}{4}\right)+\frac{17}{4}\)
\(=\left(x+\frac{3}{2}\right)^2+\frac{17}{4}\ge\frac{17}{4}\)
vay .............................................
2/
\(A=-x^2+4x+8=-\left(x^2-4x+4\right)+12=-\left(x-2\right)^2+12\le12\)
vay .........................................
\(B=-x^2+3x-5=-\left(x^2-2\frac{3}{2}x+\frac{9}{4}\right)-\frac{11}{4}=\left(x-\frac{3}{2}\right)^2-\frac{11}{4}\le-\frac{11}{4}\)
vay.....................................
nếu có sai mong bạn thông cảm
A = -x2 - 4x - 2 = -( x2 + 4x + 4 ) + 2 = -( x + 2 )2 + 2
-( x + 2 )2 ≤ 0 ∀ x => -( x + 2 )2 + 2 ≤ 2
Đẳng thức xảy ra <=> x + 2 = 0 => x = -2
=> MaxA = 2 <=> x = -2
B = -x2 + 10x - 24 = -( x2 - 10x + 25 ) + 1 = -( x - 5 )2 + 1
-( x - 5 )2 ≤ 0 ∀ x => -( x - 5 )2 + 1 ≤ 1
Đẳng thức xảy ra <=> x - 5 = 0 => x = 5
=> MaxB = 1 <=> x = 5
C = -x2 - x - 1 = -( x2 + x + 1/4 ) - 3/4 = -( x + 1/2 )2 - 3/4
-( x + 1/2 )2 ≤ 0 ∀ x => -( x + 1/2 )2 - 3/4 ≤ -3/4
Đẳng thức xảy ra <=> x + 1/2 = 0 => x = -1/2
=> MaxC = -3/4 <=> x = -1/2
D = -3x2 - 3x - 3 = -3( x2 + x + 1/4 ) - 9/4 = -3( x + 1/2 )2 - 9/4
-3( x + 1/2 )2 ≤ 0 ∀ x => -3( x + 1/2 )2 - 9/4 ≤ -9/4
Đẳng thức xảy ra <=> x + 1/2 = 0 => x = -1/2
=> MaxD = -9/4 <=> x = -1/2
A = (x2 - 3x + 1)(24 + 3x - x2)
A = -(x2 - 3x + 1)(x2 - 3x -24)
A = -[(x2 - 3x + 1)2 - 25(x2 - 3x + 1)]
A = -[(x2 - 3x + 1)2 - 25(x2 - 3x + 1) + 156,25 - 156,25]
A = -(x2 - 3x + 1 - 12,5)2 + 156,25
A = -(x2 - 3x - 11,5)2 + 156,25 \(\le\)156,25 \(\forall\)x
Dấu "=" xảy ra <=> x2 - 3x - 11,5 = 0
<=> (x2 - 3x + 2,25) = 3,75
<=> (x - 1,5)2 = 3,75
<=> \(\orbr{\begin{cases}x=\frac{3+\sqrt{15}}{2}\\x=\frac{3-\sqrt{15}}{2}\end{cases}}\)
Vậy MaxA = 156,25 khi \(\orbr{\begin{cases}x=\frac{3+\sqrt{15}}{2}\\x=\frac{3-\sqrt{15}}{2}\end{cases}}\)
Đặt \(A=-3x^2+x-\frac{2}{3}=-3\left(x^2-\frac{x}{3}+\frac{1}{36}\right)-\frac{7}{12}=-3\left(x-\frac{1}{6}\right)^2-\frac{7}{12}\le-\frac{7}{12}\)
Vậy GTLN của A là \(-\frac{7}{12}\) khi \(x=\frac{1}{6}\)
Học tốt nhé em :)