K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2016

Bn tự vẽ hình nha:

a) Vì góc HBA+góc HCA=90độ(tam giác ABC vuông tại A)

 mà góc HBA+góc HAB=90độ

=> góc HCA=góc HAB(1)

và góc AHB=góc CHA=90độ(2)

từ (1)(2)=> tam giác ABH đồng dạng với tam giác CAH

b)vì P ,Q là trung điểm của AH và Bh

=> PQ // AB

mà AB vuông góc CA

=> PQ vuông góc CA

Xét tam giác CAQ có P là giao 2 đường cao PQ và AH

=> CP là đường cao còn lại 

=> AQ vuông góc CP

a) Xét ΔABC vuông tại A và ΔHAC vuông tại H có 

\(\widehat{C}\) chung

Do đó: ΔABC\(\sim\)ΔHAC(g-g)

a: Xét ΔHMN và ΔHAB có

\(\dfrac{HM}{HA}=\dfrac{HN}{HB}\)

\(\widehat{MHN}\) chung

Do đó: ΔHMN đồng dạng với ΔHAB

b:

Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{HBA}\right)\)

Do đó: ΔHAB đồng dạng với ΔHCA

=>\(\dfrac{HA}{HC}=\dfrac{HB}{HA}\)

=>\(HA^2=HB\cdot HC\)

 \(HM\cdot HA=\dfrac{1}{2}\cdot HA\cdot HA=\dfrac{1}{2}HA^2\)

\(HN\cdot HC=\dfrac{1}{2}\cdot HB\cdot HC=\dfrac{1}{2}\cdot HA^2\)

Do đó: \(HM\cdot HA=HN\cdot HC\)

c: \(HM\cdot HA=HN\cdot HC\)

=>\(\dfrac{HN}{HM}=\dfrac{HA}{HC}\)

Xét ΔHAN vuông tại H và ΔHCM vuông tại H có

\(\dfrac{HA}{HC}=\dfrac{HN}{HM}\)

Do đó: ΔHAN đồng dạng với ΔHCM

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạng với ΔHAC

b: Xét ΔKAH vuông tại K và ΔHCA vuông tại H có

góc KAH=góc HCA

=>ΔKAH đồng dạng với ΔHCA

=>AH/CA=KH/HA

=>AH^2=KH*AC

c: Xét ΔHAC có HQ/HC=HP/HA

nên QP//AC

=>QP vuông góc AB

Xét ΔQAB có

QP,AH là đường cao

QP cắt AH tại P

=>P là trựctâm

=>BP vuông góc AQ tại M

30 tháng 3 2021

                               Bài giải

a) Xét tam giác ABH và CAH có:

  \(\widehat{AHB}=\widehat{CHA}\left(=90^o\right)\)

\(\widehat{BAH}=\widehat{ACH}\left(=90^o-\widehat{ABC}\right)\)
\(\Rightarrow\Delta ABH\infty\Delta CAH\left(g.g\right)\)

 \(\Delta ABH\infty\Delta CAH\left(g.g\right)\) (câu a)  \(\Rightarrow\dfrac{AB}{AC}=\dfrac{BH}{AH}=\dfrac{BH\text{ : }2}{AH\text{ : 2}}=\dfrac{BP}{AQ}\)

Xét \(\Delta ABP \text{và }\Delta CAQ\) có: BPAQ=ABAC

                                        \(\widehat{CAH}=\widehat{ABH}\left(=90^o-\widehat{BAH}\right)\)

\(\Rightarrow\Delta ABP\infty\Delta CAQ\left(c.g.c\right)\)

b, Ta có: PQ là đg trung bình của\(\Delta ABH\Rightarrow\text{ }PQ\text{ // }AB\text{ }\Rightarrow\text{ }PQ\perp AC\)  

Mà AHPC  => Q là trực tâm của \(\Delta APC\)

\(\Rightarrow\text{ }AP\perp CQ\)

2 tháng 5 2022

$\text non$

2 tháng 5 2022

$\text non color (red)$

28 tháng 2 2018

a) Xét tam giác AHD và tam giác ABH có:

Góc A chung

\(\widehat{ADH}=\widehat{AHB}\left(=90^o\right)\)

\(\Rightarrow\Delta AHD\sim\Delta ABH\left(g-g\right)\)

\(\Rightarrow\frac{AH}{AB}=\frac{AD}{AH}\Rightarrow AH^2=AB.AD\)

b) Ta có tứ giác ADHE có 3 góc vuông nên nó là hình chữ nhật.

Vậy thì \(\widehat{DHA}=\widehat{DEA}\) 

Lại có \(\widehat{DHA}=\widehat{CBA}\) nên \(\widehat{DEA}=\widehat{CBA}\)

Suy ra \(\Delta ADE\sim\Delta ACB\left(g-g\right)\)

c) Gọi I là giao điểm của AO và DE.

Xét tam giác vuông ABC có AO là trung tuyến ứng với cạnh huyền nên OA = OC  hay \(\widehat{OAC}=\widehat{OCA}\)

Lại có  \(\widehat{AED}=\widehat{ABC}\)  nên \(\widehat{OAC}+\widehat{DEA}=\widehat{OCA}+\widehat{ABC}=90^o\)

Suy ra \(\widehat{AIE}=90^o\) hay \(AO\perp DE\)

d) Ta có do \(AO\perp DE\) nên:

\(S_{ADOE}=\frac{1}{2}DE.OA=\frac{1}{2}AH.\frac{BC}{2}=\frac{1}{2}a.AH\)

Vậy thì \(S_{ADOE}\) lớn nhất khi AH lớn nhất.

Xét tam giác vuông ABC, ta có

 \(BC.AH=AB.AC\le\frac{AB^2+AC^2}{2}=\frac{BC^2}{2}=2a^2\)

\(\Rightarrow AH\le a\)

Vậy AH lớn nhất khi AH = a tức là tam giác ABC vuông cân tại A.