\(a.b=8\) và \(\sqrt[3]{a}+\sqrt[3]{b}=3\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2016

Ta có \(\sqrt[3]{a}.\sqrt[3]{b}=2Haisố\sqrt[3]{a},\sqrt[3]{b}cầntìmlànghiệmcủapt\)

x2-3x+2  Ta có a +b+c =1-3+2 =0 =>x1 = 1   x2=c/a =2

Vậy \(\sqrt[3]{a}=1hoặc\sqrt[3]{a}=2;\sqrt[3]{b}=1hoặc\sqrt[3]{b}=2\)Suy ra a =1 hoặc a = 8      b=1 hoặc b=8

2 tháng 5 2016

cảm ơn bạn nhìu nka ^^

6 tháng 10 2020

Ta có: 

1) \(A=a\cdot b=\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=\sqrt{9-5}=\sqrt{4}=2\)

2) \(B=a^2+b^2=\left(\sqrt{3+\sqrt{5}}\right)^2+\left(\sqrt{3-\sqrt{5}}\right)^2\)

\(=3+\sqrt{5}+3-\sqrt{5}=6\)

3) Xét: \(\left(a+b\right)^2=a^2+2ab+b^2=10\)

\(\Rightarrow a+b=\sqrt{10}\)

\(C=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(=\sqrt{10}\cdot\left(6-2\right)\)

\(=4\sqrt{10}\)

4) \(a^5+b^5=\left(a+b\right)^5-\left(5a^4b+10a^3b^2+10a^2b^3+5ab^4\right)\)

\(=\left(\sqrt{10}\right)^5-5ab\left(a^3+b^3\right)-10a^2b^2\left(a+b\right)\)

\(=100\sqrt{10}-5\cdot2\cdot4\sqrt{10}-10\cdot2^2\cdot\sqrt{10}\)

\(=100\sqrt{10}-40\sqrt{10}-40\sqrt{10}\)

\(=20\sqrt{10}\)

12 tháng 8 2021

a, \(A=\left(\frac{1}{\sqrt{x}+2}-\frac{1}{\sqrt{x}-2}\right):\frac{-\sqrt{x}}{x-2\sqrt{x}}\)

\(A=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\frac{-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(A=\frac{\sqrt{x}-2-\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\frac{-\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}}\)

\(A=\frac{4}{\sqrt{x}+2}\)

b, \(A=\frac{4}{\sqrt{x}+2}=\frac{2}{3}\)

=> 2cawn x + 4 = 12

=> 2.căn x = 8

=> căn x = 4

=> x = 16 (thỏa mãn)

c, có A = 4/ căn x + 2 và B  = 1/căn x - 2

=> A.B = 4/x - 4 

mà AB nguyên

=> 4 ⋮ x - 4

=> x - 4 thuộc Ư(4) 

=> x - 4 thuộc {-1;1;-2;2;-4;4}

=> x thuộc {3;5;2;6;0;8} mà x > 0 và x khác 4

=> x thuộc {3;5;2;6;8}

d, giống c thôi

7 tháng 8 2019

Khi x=25

=> A=\(\frac{7}{\sqrt{25+8}}=\frac{7}{\sqrt{\text{3}\text{3}}}\)=\(\frac{7\sqrt{33}}{33}\)

b)  B= \(\frac{x+3\sqrt{x}}{\left(\sqrt{x}-3\right).\left(\sqrt{x}+3\right)}+\frac{2\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

B=  \(\frac{x+5\sqrt{x}-24}{\left(\sqrt{x}-3\right).\left(\sqrt{x}+3\right)}\)

B=  \(\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+8\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+8}{\sqrt{x}+3}\)

17 tháng 8 2016

Ta có : \(\frac{23\sqrt{2}}{\sqrt{2}+\sqrt{14+5\sqrt{3}}}=\frac{46}{2+\sqrt{28+10\sqrt{3}}}=\frac{46}{2+\sqrt{\left(\sqrt{3}+5\right)^2}}=\frac{46}{7+\sqrt{3}}\)

\(=\frac{46\left(7-\sqrt{3}\right)}{\left(7+\sqrt{3}\right)\left(7-\sqrt{3}\right)}=\frac{46\left(7-\sqrt{3}\right)}{46}=7-\sqrt{3}\)

Suy ra a = 7 , b = -1

=> a x b = -7

18 tháng 11 2018

a) Ta có

\(A^2=\left(\sqrt{5}+3\right)^2=5+2\sqrt{5}.3+3^2=14+6\sqrt{5}\)

\(B^2=\left(\sqrt{5}-3\right)^2=5-2.\sqrt{5}.3+3^2=14-6\sqrt{5}\)

\(A.B=\left(\sqrt{5}+3\right)\left(\sqrt{5}-3\right)=\left(\sqrt{5}\right)^2-3^2=5-9=-4\)

b) Ta có \(\dfrac{A}{B}+\dfrac{B}{A}=\dfrac{A^2}{A.B}+\dfrac{B^2}{A.B}=\dfrac{A^2+B^2}{A.B}=\dfrac{\left(14+6\sqrt{5}\right)+\left(14-6\sqrt{5}\right)}{-4}=\dfrac{28}{-4}=-7\)

Mà -7 là một số nguyên

Vậy \(\dfrac{A}{B}+\dfrac{B}{A}\) là một số nguyên

2 tháng 9 2017

Ta có : \(\sqrt{3}.x-\sqrt{75}=0\)

\(\Leftrightarrow\sqrt{3}.x-5\sqrt{3}=0\)

\(\Leftrightarrow\sqrt{3}\left(x-5\right)=0\)

Vì \(\sqrt{3}\ne0\)

Nên : x - 5 = 0

Vậy x = 5. 

2 tháng 9 2017

b) Ta có : \(\sqrt{2}.x+\sqrt{2}=\sqrt{8}+\sqrt{32}\)

\(\Leftrightarrow\sqrt{2}\left(x+1\right)=6\sqrt{2}\)

\(\Leftrightarrow\sqrt{2}\left(x+1\right)-6\sqrt{2}=0\)

\(\Leftrightarrow\sqrt{2}.\left(x+1-6\right)=0\)

\(\Leftrightarrow\sqrt{2}.\left(x-5\right)=0\)

Vì \(\sqrt{2}\ne0\)

Nên x - 5 = 0

Suy ra : x = 5

24 tháng 8 2016

P = AB = \(\frac{3\sqrt{x}}{\sqrt{x}+1}\)= 3 - \(\frac{3}{\sqrt{x}+1}\)

Để P nguyên thì \(1+\sqrt{x}\)phải là ước của 3 hay \(1+\sqrt{x}\)= (1;3)

Thế vào giải ra