Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phan Minh Anh
Gọi x là số ghế băng ban đầu (x thuôc N*)
Suy ra số học sinh ở mỗi ghế băng là 40:x
Nếu bớt đi 2 ghế băng (x-2) thì mỗi ghế còn lại phải xếp thêm 1 hs (x+1)
Hay (x-2).(x+1) =40
<=> x2 -2x -80 =0
<=> x=10
Vậy số ghế băng ban đầu là 10 ghế
Gọi số ghế băng lúc đầu là x ( ghế băng), ( x∈N*, x> 2)
Số học sinh ngồi trên mỗi ghế là ( học sinh ) .
Khi bớt đi 2 ghế băng thì còn lại x- 2 ( ghế băng ) và khi đó, mỗi ghế có học sinh ngồi.
Theo giả thiết, nếu ta bớt đi 2 ghế băng thì mỗi ghế còn lại phải xếp thêm 1 học sinh nên ta có phương trình:
⇔ 40 x − x ( x − 2 ) = 40 ( x − 2 ) ⇔ 40 x − x 2 + 2 x = 40 x − 80 ⇔ − x 2 + 2 x + 80 = 0
Có a = -1, b= 2; c = 80 và ∆ = 2 2 – 4 . ( - 1 ) . 80 = 324
Nên phương trình trên có 2 nghiệm là: x1 = -8 ( loại) và x2 =10 ( thỏa mãn)
Vậy lúc đầu có 10 ghế băng.
Gọi số ghế băng lúc đầu là x ( ghế băng), ( x∈N*, x> 2)
Số học sinh ngồi trên mỗi ghế là ( học sinh ) .
Khi bớt đi 2 ghế băng thì còn lại x- 2 ( ghế băng ) và khi đó, mỗi ghế có học sinh ngồi.
Theo giả thiết, nếu ta bớt đi 2 ghế băng thì mỗi ghế còn lại phải xếp thêm 1 học sinh nên ta có phương trình:
⇔ 40 x − x ( x − 2 ) = 40 ( x − 2 ) ⇔ 40 x − x 2 + 2 x = 40 x − 80 ⇔ − x 2 + 2 x + 80 = 0
Có a = -1, b= 2; c = 80 và ∆ = 2 2 – 4 . ( - 1 ) . 80 = 324
Nên phương trình trên có 2 nghiệm là: x1 = -8 ( loại) và x2 =10 ( thỏa mãn)
Vậy lúc đầu có 10 ghế băng.
Lời giải:
Giả sử trong phòng học có $a$ học sinh.
Theo bài ra, nếu xếp mỗi bộ bàn ghế 3 hs thì số bộ bàn ghế là:
$\frac{a-4}{3}$ (bộ)
Nếu xếp mỗi bộ bàn ghế 4 học sinh thì số bộ bàn ghế là:
$\frac{a-2}{4}$ (bộ)
Số bộ bàn ghế không đổi nên: $\frac{a-4}{3}=\frac{a-2}{4}$
$\Rightarrow a=10$ (hs)
Số bộ bàn ghế là: $\frac{a-2}{4}=\frac{10-2}{4}=2$ (bộ)