Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(\frac{x}{3}-\frac{4}{y}=\frac{1}{5}\)
\(\Rightarrow\frac{x}{3}-\frac{1}{5}=\frac{4}{y}\)
\(\Rightarrow\frac{x.5}{15}-\frac{3}{15}=\frac{4}{y}\)
\(\Rightarrow\frac{x.5-3}{15}=\frac{4}{y}\)
\(\Rightarrow\left(x.5-3\right).y=15.4\)
\(\Rightarrow x.5.y-3.5=60\)
\(\Rightarrow xy5-15=60\)
\(\Rightarrow xy5=60+15\)
\(\Rightarrow xy5=75\)
\(\Rightarrow xy=75\div5\)
\(\Rightarrow xy=15\)
\(\Rightarrow xy=1.15=3.5=\left(-15\right)\left(-1\right)=\left(-3\right)\left(-5\right)=\left(-5\right)\left(-3\right)=\left(-1\right)\left(-15\right)=5.3=15.1\)
Do đó x = 1 thì y = 15
x = 3 thì y =5
x = -15 thì y = -1
x = -3 thì y = -5
x = -5 thì y = -3
x = -1 thì y = -15
x = 5 thì y = 3
x = 15 thì y = 1
1. \(\frac{-7}{12}\)< \(\frac{x-1}{4}\)< \(\frac{2}{3}\)
=> \(\frac{-7}{12}\)< \(\frac{3.\left(x-1\right)}{12}\)< \(\frac{8}{12}\)
=> 3 . ( x - 1 ) thuộc { - 6 ; - 5 ; - 4 ; - 3 ; - 2 ; - 1 ; 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7}
Lập bảng tính giá trị x , cái này dễ lên bạn tự làm nha
1/ \(-\frac{7}{12}< \frac{x-1}{4}< \frac{2}{3}\)
hay \(\frac{-7}{12}< \frac{3.\left(x-1\right)}{12}< \frac{8}{12}\)
Vậy \(-7< 3.\left(x-1\right)< 8\)
Vậy \(3.\left(x-1\right)\in\left\{-6;-5;-4;...;7\right\}\)
mà \(x\in Z\)nên \(3.\left(x-1\right)⋮3\)
Vậy \(3.\left(x-1\right)\in\left\{-6;-3;0;3;6\right\}\)
hay \(x-1\in\left\{-2;-1;0;1;2\right\}\)
tới đây dễ rồi thì làm nốt nhé, để thời gian làm mấy câu sau!
a )x.y=3.5 => x.y =1.15=3.5
x thuộc 1 , 15 , 3 ,5
y thuộc 1,15 , 3 ,5
b )x = 18
y = 2
c ) x= 30
y =0
d phần này mk chưa ra
ta có : 1/y = x/4 - 1/2 = ( x+2)/4 <=> y = 4/(x - 2)
Để x, y nguyên nên ta có : x-2 ϵ Ư(4) = { -1 , 1 ,-2,2-4,4}
x-2=1=>x=3=>y=4
x-2=-1=>x=1=>y=-4
x-2=-2=>x=0=>y=0
x-2=2=>x=4=>y=2
x-2=-4=>x=-2=>y=-1
x-2=4=>x=6=>y=1
vay cac cap so nguyen( x,y) la :(3,4),(1,-4),(0,0),(4,2),(-2,-1),(6,1)
x4
12
1
\(\frac{x}{6}-\frac{2}{y}=\frac{1}{12}\)
<=> \(\frac{2}{y}=\frac{2x}{12}-\frac{1}{12}\)
<=> \(\frac{2}{y}=\frac{2x-1}{12}\)
<=> \(y\left(2x-1\right)=24\)
=> y; 2x - 1 \(\in\)Ư(24) = {1; -1; 2; -2; 3; -3; 4; -4; 6; -6; 8; -8; 12; -12; 24; -24}
Do x; y \(\in\)Z, mà 2x - 1 là số lẽ => 2x - 1 \(\in\){1; -1; 3; -3}
Lập bảng:
2x - 1 | 1 | -1 | 3 | -3 |
y | 24 | -24 | 8 | -8 |
x | 1 | 0 | 2 | -1 |
Vậy ...
a) \(\frac{3}{x}+\frac{y}{3}=\frac{5}{6}\Rightarrow\frac{3}{x}=\frac{5}{6}-\frac{y}{3}=\frac{5}{6}-\frac{2y}{6}=\frac{5-2y}{6}\)
Do đó: x(5-2y)=18=2.32
=> Do x và y là các số nguyên nên 5-2y là ước của 18, mặt khác 5-2y là số lẻ.
Ước lẻ của 18 là : {1,-1,3,-3,9,-9}.
Ta có bảng:
5-2y | 1 | -1 | 3 | -3 | 9 | -9 |
2y | 4 | 6 | 2 | 8 | -4 | -14 |
y | 2 | 3 | 1 | 4 | -2 | 7 |
x | 18 | -18 | 6 | -6 | 2 | -2 |
b) Ta có: \(\frac{x}{6}-\frac{2}{y}=\frac{1}{30}\)
\(\Rightarrow5xy-60=y\)
\(y\left(5x-1\right)=60\)
Vì x,y là sô nguyên nên y là ước của 60
Mà Ư(60)={-60,-30,-20,-15,-12,-10,-6,-5,-4,-3,-2,-1,1,2,3,4,5,6,10,12,15,20,30,60}
Ta có bảng sau:
y | -60 | -30 | -20 | -15 | -12 | -10 | -6 | -5 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 5 | 6 | 10 | 12 | 15 | 20 | 30 | 60 |
5x-1 | -1 | -2 | -3 | -4 | -5 | -6 | -10 | -12 | -15 | -20 | -30 | -60 | 60 | 30 | 20 | 15 | 12 | 10 | 6 | 5 | 4 | 3 | 2 | 1 |
x | 0 | L | L | L | L | -1 | L | L | L | L | L | L | L | L | L | L | L | L | L | L | 1 | L | L | L |
Dựa vào bảng trên ta tìm được các cặp nghiệm (x,y) là: (0,-60); (-1,-10); (1,15)
c) \(\frac{x}{3}-\frac{4}{y}=\frac{1}{5}\Rightarrow\frac{4}{y}=\frac{x}{3}-\frac{1}{5}=\frac{5x-3}{15}\Rightarrow y\left(5x-3\right)=60\)
=> 5x-3 thuộc Ư(60)={-60,-30,-20,-15,-12,-10,-6,-5,-4,-3,-2,-1,1,2,3,4,5,6,10,12,15,20,30,60}
Ta có bảng sau:
5x-3 | -60 | -30 | -20 | -15 | -12 | -10 | -6 | -5 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 5 | 6 | 10 | 12 | 15 | 20 | 30 | 60 |
x | L | L | L | L | L | L | L | L | L | 0 | L | L | L | 1 | L | L | L | L | L | 3 | L | L | L | L |
y | L | L | L | L | L | L | L | L | L | -20 | L | L | L | 30 | L | L | L | L | L | 5 | L | L | L | L |
Vậy...
a) \(\frac{9+xy}{3x}=\frac{5}{6}\) <=> 6(9+xy)=15x <=> 54+6xy=15x <=> 15x-6xy=54
<=> 3(5x-2xy) =54 <=> 5x-2xy=18 <=> x(5-2y) =18=\(\pm2.9=\pm1.18=\pm3.6\)
Vì 5-2y luôn là số lẻ nên 5-2y\(\in\left\{\pm1,\pm3,\pm9\right\}\)=> x\(\in\left\{\pm18,\pm6,\pm2\right\}\)
=> (x,y)=(18,2);(-18,3);(6,1);(-6,4);(2,-2);(-2,7)
b)\(\frac{xy-12}{6y}=\frac{1}{30}\)<=> 30(xy-12)=6y <=> 30xy-360=6y <=> 6y(5x-1)=360
<=> y(5x-1)=60
Làm tương tự câu a
c) \(\frac{xy-12}{3y}=\frac{1}{5}\)<=> 5xy-60=3y
<=> y(5x-3)=60
Làm tương tự
x=3;y=2