Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2C=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{39-37}{37.38.39}\)
\(2C=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}\)
\(2C=\frac{1}{1.2}-\frac{1}{38.39}\)
\(C=\frac{617}{1482}\)
\(3D=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\)
\(3D-D=1-\frac{1}{3^8}\)
\(D=\frac{1}{2}-\frac{1}{2.3^8}\)
Ta có:\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{37.38}-\frac{1}{38.39}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{38.39}\right)\)
b,\(D=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\)
\(\Rightarrow3D=1+\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^7}\)
\(\Rightarrow2D=1-\frac{1}{3^8}\)
\(\Rightarrow D=\frac{3^8-1}{3^8}:2\)
\(\frac{3}{5}\cdot\frac{18}{17}+\frac{3}{5}\cdot\frac{9}{17}-\frac{3}{5}\cdot\frac{10}{17}\)
\(=\frac{3}{5}\left[\frac{18}{17}+\frac{9}{17}-\frac{10}{17}\right]\)
\(=\frac{3}{5}\left[\frac{18+9-10}{17}\right]=\frac{3}{5}\cdot1=\frac{3}{5}\)
Bài làm
\(\frac{3}{5}.\frac{18}{17}+\frac{3}{5}.\frac{9}{18}-\frac{3}{5}.\frac{10}{17}\)
\(=\frac{3}{5}.\left(\frac{18}{17}+\frac{9}{18}-\frac{10}{17}\right)\)
~ Đến đây tự tính, tối rồi, lười k mún tính . tính trong ngoặc trc nha~
# Học tốt #
\(A=\left(3+\frac{1}{2}-\frac{2}{3}\right)-\left(2-\frac{2}{3}+\frac{5}{2}\right)-\left(5-\frac{5}{2}+\frac{4}{3}\right)\)
\(A=3+\frac{1}{2}-\frac{2}{3}-2+\frac{2}{3}-\frac{5}{2}-5+\frac{5}{2}-\frac{4}{3}\)
\(A=\left(3-2-5\right)+\left(\frac{2}{3}-\frac{2}{3}\right)+\left(\frac{5}{2}-\frac{5}{2}\right)+\frac{1}{2}-\frac{4}{3}\)
\(A=-4+\frac{1}{2}-1-\frac{1}{3}\)
\(A=-5+\frac{1}{2}-\frac{1}{3}\)
\(A=-5+\frac{1}{6}\)
\(A=-4\frac{5}{6}\)
\(\frac{-3}{7}+\frac{15}{26}-\left(\frac{2}{13}-\frac{3}{7}\right)=\frac{-3}{7}+\frac{15}{26}-\frac{2}{13}+\frac{3}{7}\)
\(=\left(\frac{-3}{7}+\frac{3}{7}\right)+\left(\frac{15}{26}-\frac{2}{13}\right)\)
\(=0+\left(\frac{15}{26}-\frac{4}{26}\right)\)
\(=\frac{11}{26}\)
\(\frac{-3}{7}+\frac{15}{26}-\left(\frac{2}{13}-\frac{3}{7}\right)\)
=\(\frac{-3}{7}+\frac{15}{26}-\left(\frac{-2}{13}\right)+\frac{3}{7}\)
=\(\frac{-3}{7}+\frac{15}{26}+\frac{2}{13}+\frac{3}{7}\)
=\(\left(\frac{-3}{7}+\frac{3}{7}\right)+\frac{15}{26}+\frac{2}{13}\)
=\(0+\frac{19}{26}\)
=\(\frac{19}{26}\)
Nếu đúng thì tk nha
\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)
\(A=\frac{3}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)
\(A=\frac{3}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(A=\frac{3}{2}.\left(1-\frac{1}{51}\right)\)
\(A=\frac{3}{2}.\frac{50}{51}=\frac{25}{17}\)
\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)
\(A=3.\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{49}-\frac{1}{50}\right)\)
\(A=\frac{3}{2}\left(1-\frac{1}{50}\right)\)
\(A=\frac{3}{2}.\frac{49}{50}\)
\(A=\frac{147}{100}\)
\(\frac{3}{5\cdot7}+\frac{3}{7\cdot9}+\frac{3}{9\cdot11}+...+\frac{3}{2013\cdot2015}\)
\(=\frac{3}{2}\cdot\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)
\(=\frac{3}{2}\cdot\left(\frac{1}{5}-\frac{1}{2015}\right)=\frac{3}{2}\cdot\frac{402}{2015}-\frac{603}{2015}\)
Vậy \(\frac{3}{5\cdot7}+\frac{3}{7\cdot9}+\frac{3}{9\cdot11}+...+\frac{3}{2013\cdot2015}=\frac{603}{2015}\)
3/5.7 + 3/7.9 + 3/9.11 + ... 3/2013.2015
= 3/2.( 2/5.7 + 2/7.9 + 2/9.11 + ... + 2/2013.2015)
= 3/2. ( 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11 + ... + 1/2013 - 1/2015)
~~~ SAU ĐÓ BẠN GẠCH ĐI NHỮNG PHÂN SỐ GIỐNG NHAU NHÁ ~~~
= 3/2. ( 1/5 - 1/2015)
= 3/2. 2010/10075
= 603/4030
Mk chắc chắn cách làm đúng đó!!!
a ) Co :
1/1.2 - 1/2.3 = 2/1.2.3
1/2.3 - 1/3.4 = 2/2.3.4
...
1/37.38 - 1/38.39 = 2/37.38.39
=> 2M = 2/1.2.3 + 2/2.3.4 + ... + 2/37.38.39
=> 2M = 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + ... + 1/37.38 - 1/38.39
=> 2M = 1/2 - 1/1482
=> 2M = 370/741
=> M = 185/741
B ) A = 1/3 + 1/3^2 + 1/3^3 + ... + 1/3^8
3A = 1 + 1/3 + 1/3^2 + ... + 1/3^7
3A - A = ( 1 + 1/3 + 1/3^2 + ... + 1/3^7 ) - ( 1/3 + 1/3^2 + 1/3^3 + ... + 1/3^8 )
2A = 1 - 1/3^8
A = ( 1 - 1/3^8 ) / 2
3/n . n/3 = 3.n/n.3 = 1
3/n.n/3 = 3n/3n =1