Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
A = 1 + 3 + 32 + ... + 3100
=> 3A = 3 + 32 + ... + 3101
=> 2A = 3101 - 1
=> A = \(\frac{3^{101}-1}{2}\)
B = 1 + 42 + 44 + ... + 4100
=> 8B = 42 + 44 + ... + 4102
=> 7B = 4102 - 1
=> B = \(\frac{4^{102}-1}{7}\)
Bài 2:
a) S1 = 22 + 42 + ... + 202
=> S1 = 22(1+22+...+102)
=> S1 = 22.385
=> S1 = 1540
b) S2 = 1002 + 2002 + ... + 10002
=> S2 = 1002(1+22+...+102)
=> S2 = 1002.385
=> S2 = 3850000
\(7,\)
\(A=7+\left(\dfrac{7}{12}-\dfrac{1}{2}+3\right)-\left(\dfrac{1}{12}+5\right)\)
\(=7+\dfrac{7}{12}-\dfrac{1}{2}+3-\dfrac{1}{12}-5\)
\(=\left(\dfrac{7}{12}-\dfrac{1}{12}\right)+\left(7+3-5\right)-\dfrac{1}{2}\)
\(=\dfrac{6}{12}+5-\dfrac{1}{2}\)
\(=\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+5\)
\(=5\)
\(8,\)
\(A=-\dfrac{1}{4}+\dfrac{7}{33}-\dfrac{5}{3}-\left(-\dfrac{15}{12}+\dfrac{6}{11}-\dfrac{68}{49}\right)\)
\(=-\dfrac{1}{4}+\dfrac{7}{33}-\dfrac{5}{3}+\dfrac{15}{12}-\dfrac{6}{11}+\dfrac{68}{49}\)
\(=\left(-\dfrac{1}{4}+\dfrac{15}{12}\right)+\left(\dfrac{7}{33}-\dfrac{5}{3}-\dfrac{6}{11}\right)+\dfrac{68}{49}\)
\(=\left(-\dfrac{3}{12}+\dfrac{15}{12}\right)+\left(\dfrac{7}{33}-\dfrac{55}{33}-\dfrac{18}{33}\right)+\dfrac{68}{49}\)
\(=\dfrac{12}{12}-\dfrac{66}{33}+\dfrac{68}{49}\)
\(=1-2+\dfrac{68}{49}\)
\(=-1+\dfrac{68}{49}\)
\(=\dfrac{19}{49}\)
Câu hỏi