Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
$6x^2y^3+3x^2-10y^3=-2$
$\Leftrightarrow 2y^3(3x^2-5)+(3x^2-5)=-7$
$\Leftrightarrow (2y^3+1)(3x^2-5)=-7$
Vì $x,y$ nguyên nên $2y^3+1; 3x^2-5$ cũng đều nhận giá trị nguyên.
Đến đây ta xét các TH:
TH1: $2y^3+1=-1; 3x^2-5=7$
TH2: $2y^3+1=1; 3x^2-5=-7$
TH3: $2y^3+1=-7; 3x^2-5=1$
TH4: $2y^3+1=7; 3x^2-5=-1$
Giải lần lượt các TH ta được $x=\pm 2; y=-1$
Ta có:
x2 + 2y2 + 3xy + 3x + 5y = 15
<=> x2 + 2y2 + 3xy + 3x + 5y + 2 = 17
<=> (x2 + xy + 2x) + (2xy + 2y2 + 4y) + (x + y + 2) = 17
<=> (x + y + 2)(x + 2y + 1) = 17
=> (x + y + 2, x + 2y + 1) = (1,17; 17,1; - 1,-17; -17,-1)
Giải ra là tìm được x,y nhé
\(\Leftrightarrow3\left(x^2-2\right)=\left(y+1\right)^2\)
\(3\left(x^2-2\right)⋮3\Rightarrow y+1⋮3\Rightarrow\left(y+1\right)^2⋮9\)
\(\Rightarrow x^2-2⋮3\) (vô lý do \(x^2\) chia 3 luôn dư 0 hoặc 1)
Vậy pt đã cho vô nghiệm
Ta có : \(2x^2+y^2+3xy+3x+2y+2=0\)
\(\Leftrightarrow y^2+y\left(3x+2\right)+2x^2+3x+2=0\)
Nhận thấy pt trên là phương trình bậc hai ẩn y . Do đó ta xét
\(\Delta=\left(3x+2\right)^2-4\left(2x^2+3x+2\right)=x^2-4\)
Để pt có nghiệm thì \(\Delta\ge0\Rightarrow x^2-4\ge0\) \(\Rightarrow\left[\begin{array}{nghiempt}x\ge2\\x\le-2\end{array}\right.\)
Mà x,y là nghiệm nguyên của pt nên \(x^2-4\) là bình phương của một số hữu tỉ , đặt \(x^2-4=k^2\Rightarrow\left(x-k\right)\left(x+k\right)=4\) . Ta luôn có x + k > x - k với k > 0
Xét các trường hợp với x-k và x+k là các số nguyên được
\(\begin{cases}x=2\\k=0\end{cases}\) và \(\begin{cases}x=-2\\k=0\end{cases}\)
Suy ra được : \(\begin{cases}x=-2\\y=2\end{cases}\) và \(\begin{cases}x=2\\y=-4\end{cases}\)
2x2 + y2 + 3xy + 3x + 2y + 2 = 0
<=> 8x2 + 4y2 + 12xy + 12x + 8y + 8 = 0
<=> (4y2 + 12xy + 9x2) + 4(3x + 2y) + 4 - x2 + 4 = 0
<=> (3x + 2y + 2)2 - x2 = -4
<=> (3x + 2y + 2 - x)(3x + 2y + 2 + x) = -4
<=> (2x + 2y + 2)(4x + 2y + 2) = -4
<=> (x + y + 1)(2x + y + 1) = -1
Xét các TH xảy ra <=>
\(\hept{\begin{cases}x+y+1=1\\2x+y+1=-1\end{cases}}\)
\(\hept{\begin{cases}x+y+1=-1\\2x+y+1=1\end{cases}}\)
(tự tính)
Ta có: \(2x^2+y^2+3xy+3x+2y+2=0\)
\(\Leftrightarrow y^2+y.\left(3x+2\right)+2x^2+3x+2=0\)
Nhận thấy pt trên là phương trình bậc hai ẩn y. Do đó ta xét :
\(\Delta=\left(3x+2\right)^2-4\left(2x^2+3x+2\right)=x^2-4\)
Để pt có nghiệm thì \(\Delta\ge0\)\(\Rightarrow\)\(x^2-4\ge0\)\(\Rightarrow\)\(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\)
Mà x,y là nghiệm nguyên của pt nên \(x^2-4\) là bình phương của một số hữu tỉ
Đặt \(x^2-4=k^2\)\(\Rightarrow\)\(\left(x-k\right).\left(x+k\right)=4\)
Ta luôn có \(x+k>x-k\) với \(k>0\)
Xét các trường hợp với \(x-k\)và \(x+k\)là các số nguyên được
\(\hept{\begin{cases}x=2\\k=0\end{cases}}\)và \(\hept{\begin{cases}x=-2\\k=0\end{cases}}\)
Suy ra được \(\hept{\begin{cases}x=-2\\y=2\end{cases}}\)và \(\hept{\begin{cases}x=2\\y=-4\end{cases}}\)
Học tốt
Ta có: 3x+2y=321 <=>y= -3x+321 <=> y= -3/2x +321/2
<=> y = 160-x+1/2-1/2x <=> y = 160-x +(1-x)/2
Vì x,y nguyên dương nên ta có 1-x chia hết cho 2.
Đặt 1-x là 2k (k thuộc Z) => x=1-2k và y= 160-(1-2k)+2k/2 <=> y=160+2k-1+k <=> y=159+3k
Vì y>0 => 159+3k >0 => 3k > -159 => k>-53 (1)
Vì x>0 => 1-2k >0 => 2k < 1 => k < 1/2 (2)
Từ (1) và (2) => -53 < k < 1/2, mà k thuộc Z => k= -52,-51,....-1,0 => có 53 giá trị của k thỏa mãn => pt có 53 nghiệm nguyên dương (x;y)=(1-2k;159+3k) với k thuộc Z
Đây là lần đầu mình dùng trang này nên chưa biết gõ mấy cái kí hiệu toán học, có gì bạn bỏ qua cho nhé :)