K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2016

Ta có: 3x+2y=321  <=>y= -3x+321 <=> y= -3/2x +321/2 

<=> y = 160-x+1/2-1/2x <=> y = 160-x +(1-x)/2

Vì x,y nguyên dương nên ta có 1-x chia hết cho 2.

Đặt 1-x là 2k (k thuộc Z) => x=1-2k và y= 160-(1-2k)+2k/2 <=> y=160+2k-1+k <=> y=159+3k

Vì y>0 => 159+3k >0 => 3k > -159 => k>-53    (1)

Vì x>0 => 1-2k >0 => 2k < 1 => k < 1/2           (2)

Từ (1) và (2) => -53 < k < 1/2, mà k thuộc Z => k= -52,-51,....-1,0 => có 53 giá trị của k thỏa mãn => pt có 53 nghiệm nguyên dương (x;y)=(1-2k;159+3k) với k thuộc Z

Đây là lần đầu mình dùng trang này nên chưa biết gõ mấy cái kí hiệu toán học, có gì bạn bỏ qua cho nhé :)

AH
Akai Haruma
Giáo viên
2 tháng 1 2021

Lời giải:

Ta có:

$6x^2y^3+3x^2-10y^3=-2$

$\Leftrightarrow 2y^3(3x^2-5)+(3x^2-5)=-7$

$\Leftrightarrow (2y^3+1)(3x^2-5)=-7$

Vì $x,y$ nguyên nên $2y^3+1; 3x^2-5$ cũng đều nhận giá trị nguyên.

Đến đây ta xét các TH:

TH1: $2y^3+1=-1; 3x^2-5=7$

TH2: $2y^3+1=1; 3x^2-5=-7$

TH3: $2y^3+1=-7; 3x^2-5=1$

TH4: $2y^3+1=7; 3x^2-5=-1$

Giải lần lượt các TH ta được $x=\pm 2; y=-1$

 

4 tháng 2 2017

Ta có:  

x+ 2y+ 3xy + 3x + 5y = 15

<=> x+ 2y+ 3xy + 3x + 5y + 2 = 17

<=> (x2 + xy + 2x) + (2xy + 2y2 + 4y) + (x + y + 2) = 17

<=> (x + y + 2)(x + 2y + 1) = 17

=> (x + y + 2, x + 2y + 1) = (1,17; 17,1; - 1,-17; -17,-1)

Giải ra là tìm được x,y nhé

25 tháng 8 2019

VeryVery good.Thanks. I will give 1  for you.Love

NV
25 tháng 8 2021

\(\Leftrightarrow3\left(x^2-2\right)=\left(y+1\right)^2\)

\(3\left(x^2-2\right)⋮3\Rightarrow y+1⋮3\Rightarrow\left(y+1\right)^2⋮9\)

\(\Rightarrow x^2-2⋮3\) (vô lý do \(x^2\) chia 3 luôn dư 0 hoặc 1)

Vậy pt đã cho vô nghiệm

6 tháng 9 2016

Ta có : \(2x^2+y^2+3xy+3x+2y+2=0\)

\(\Leftrightarrow y^2+y\left(3x+2\right)+2x^2+3x+2=0\)

Nhận thấy pt trên là phương trình bậc hai ẩn y  . Do đó ta xét 

\(\Delta=\left(3x+2\right)^2-4\left(2x^2+3x+2\right)=x^2-4\)

Để pt có nghiệm thì \(\Delta\ge0\Rightarrow x^2-4\ge0\) \(\Rightarrow\left[\begin{array}{nghiempt}x\ge2\\x\le-2\end{array}\right.\)

Mà x,y là nghiệm nguyên của pt nên \(x^2-4\) là bình phương của một số hữu tỉ , đặt \(x^2-4=k^2\Rightarrow\left(x-k\right)\left(x+k\right)=4\) . Ta luôn có x + k > x - k với k > 0 

Xét các trường hợp với x-k và x+k là các số nguyên được 

\(\begin{cases}x=2\\k=0\end{cases}\) và \(\begin{cases}x=-2\\k=0\end{cases}\)

Suy ra được : \(\begin{cases}x=-2\\y=2\end{cases}\) và \(\begin{cases}x=2\\y=-4\end{cases}\)

10 tháng 9 2020

2x2 + y2 + 3xy + 3x + 2y + 2 = 0

<=> 8x2 + 4y2 + 12xy + 12x + 8y + 8 = 0

<=> (4y2 + 12xy + 9x2) + 4(3x + 2y) + 4 - x2 + 4 = 0

<=> (3x + 2y + 2)2 - x2 = -4

<=> (3x + 2y + 2 - x)(3x + 2y + 2 + x) = -4

<=> (2x + 2y + 2)(4x + 2y + 2) = -4

<=> (x + y + 1)(2x + y + 1) = -1

Xét các TH xảy ra <=>

\(\hept{\begin{cases}x+y+1=1\\2x+y+1=-1\end{cases}}\)

\(\hept{\begin{cases}x+y+1=-1\\2x+y+1=1\end{cases}}\)

(tự tính)

10 tháng 9 2020

Ta có: \(2x^2+y^2+3xy+3x+2y+2=0\)

    \(\Leftrightarrow y^2+y.\left(3x+2\right)+2x^2+3x+2=0\)

Nhận thấy pt trên là phương trình bậc hai ẩn y. Do đó ta xét :

    \(\Delta=\left(3x+2\right)^2-4\left(2x^2+3x+2\right)=x^2-4\)

Để pt có nghiệm thì \(\Delta\ge0\)\(\Rightarrow\)\(x^2-4\ge0\)\(\Rightarrow\)\(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\)

Mà x,y là nghiệm nguyên của pt nên \(x^2-4\) là bình phương của một số hữu tỉ 

Đặt \(x^2-4=k^2\)\(\Rightarrow\)\(\left(x-k\right).\left(x+k\right)=4\)

Ta luôn có \(x+k>x-k\) với \(k>0\)

Xét các trường hợp với \(x-k\)\(x+k\)là các số nguyên được 

\(\hept{\begin{cases}x=2\\k=0\end{cases}}\)và  \(\hept{\begin{cases}x=-2\\k=0\end{cases}}\)

Suy ra được \(\hept{\begin{cases}x=-2\\y=2\end{cases}}\)và  \(\hept{\begin{cases}x=2\\y=-4\end{cases}}\)

Học tốt