Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(A=\frac{n+1}{n-2}=1+\frac{3}{n-2}\)
Để A nguyên thì n-2 là ước của 3 hay
\(n-2\in\left\{\pm1,\pm3\right\}\Leftrightarrow n\in\left\{-1,1,3,5\right\}\)
Để A có giá trị lớn nhất thì \(\frac{3}{n-2}\) đạt giá trị lớn nhất.
khi \(n-2>0\) và đạt giá trị nhỏ nhất
hay n=3.
a) Ta có : A= (n+1)/(n-2) = (n-2 +3)/(n -2) = 1+ 3/(n-2) Vậy để A nguyên thì (n-2) thuộc ước 3 ( +-1; +-3 ) <=> N-2 =1 <=> n =3 <=> N-2 =-1 <=> n= 1 <=> N-2 =3 <=> n= 5 <=> N-2 =-3 <=> n= -1
b) ta có : A max => (n-2) min mà (n-2) thuộc Z =>(n-2)>0 <=> (n-2 ) =1 <=> n=3
B là số nguyên thì n+1 chia hết n-2
(n+1)-(n-2)chia hết n-2
n+1-n+2chia hết n-2
3chia hết n-2
n-2 thuộc Ư(3)={-1;1;-3;3}
n thuộc {1;3;-1;5}
B=n+1/n-2=n-2+3/n-2=n-2/n-2+3/n-2=1+3/n-2
để B lớn nhất 3/n-2 lớn nhất
nên n-2 bé nhất
n-2 là số nguyên dương bé nhất
=> n-2=1
n=3
bn phải ghi cách lm ra lun chứ ko là thầy mik cx cho 0 lun
p/s: cái này ko liên quan đến bài
Vào đay:Câu hỏi của Hồ Châu Ngân - Toán lớp 6 - Học toán với OnlineMath
a, \(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{3}{n-2}\)
\(\Rightarrow n-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
b, Ta có : \(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{3}{n-2}+1\ge1\)
Dấu ''='' xảy ra <=> n - 2 = 1 <=> n = 3
Vậy GTLN A là 1 khi n = 3