Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-x+\frac{1}{4}\)
\(=x^2-2\cdot\frac{1}{2}\cdot x+\left(\frac{1}{2}\right)^2\)
\(=\left(x-\frac{1}{2}\right)^2\)
a)x2+2x+1=x2+2x.1+12=(x+1)2
b)x2-x+\(\frac{1}{4}\)=x2-2.x.\(\frac{1}{2}\)+\(\left(\frac{1}{2}\right)^2\)=\(\left(x-\frac{1}{2}\right)^2\)
a) \(x^2+4x+4\)
\(=x^2+2\cdot2\cdot x+2^2\)
\(=\left(x+2\right)^2\)
b) \(4x^2-4x+1\)
\(=\left(2x\right)^2-2\cdot2x\cdot1+1^2\)
\(=\left(2x-1\right)^2\)
c) \(x^2-x+\dfrac{1}{4}\)
\(=x^2-2\cdot\dfrac{1}{2}\cdot x+\left(\dfrac{1}{2}\right)^2\)
\(=\left(x-\dfrac{1}{2}\right)^2\)
d) \(4\left(x+y\right)^2-4\left(x+y\right)+1\)
\(=\left[2\left(x+y\right)\right]^2-2\cdot2\left(x+y\right)\cdot1+1^2\)
\(=\left[2\left(x+y\right)-1\right]^2\)
\(=\left(2x+2y-1\right)^2\)
a) \(9x^2+6x+1=\left(3x+1\right)^2\)
b)\(x^2-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2\)
c)\(x^2y^4-2xy^2+1=\left(xy^2-1\right)^2\)
d) \(x^2+\frac{2}{3}x+\frac{1}{9}=\left(x+\frac{1}{3}\right)^2\)
a) 9x2 + 6x + 1 = ( 3x + 1 )2
b) x2 - x + 1/4 = ( x - 1/2)2
c) x2 . y4 - 2xy2 + 1 = ( xy2 - 1 ) 2
d) x2 + 2/3x + 1/9 = (x+1/3)2
a: \(4-6x+\dfrac{9}{4}x^2=\left(2-\dfrac{3}{2}x\right)^2\)
c: \(x^6-3x^5+3x^4-x^3=\left(x^2-x\right)^3\)
a. \(x^2-x+\frac{1}{4}=x^2-2x\frac{1}{2}+\left(\frac{1}{2}\right)^2=\left(x-\frac{1}{2}\right)^2\)
b. \(4x^2-4x+1=\left(2x\right)^2-2.2x.1+1^2=\left(2x-1\right)^2\)
c. \(x^2-3x+\frac{9}{4}=x^2-2x\frac{3}{2}+\left(\frac{3}{2}\right)^2=\left(x-\frac{3}{2}\right)^2\)
TK MIK NHA~
a) Sửa đề: \(1-4x+4x^2\)
Ta có: \(1-4x+4x^2\)
\(=1^2-2\cdot1\cdot2x+\left(2x\right)^2\)
\(=\left(1-2x\right)^2\)
b) Ta có: \(x^2-x+\frac{1}{4}\)
\(=x^2-2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2\)
\(=\left(x-\frac{1}{2}\right)^2\)
c) Ta có: \(\left(x-y\right)^2-2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\)
\(=\left(x-y-x-y\right)^2\)
\(=\left(-2y\right)^2=4y^2\)
Ta có: \(x^4+x^3+\frac{1}{4}x^2\)
\(=x^2\left(x^2+x+\frac{1}{4}\right)\)
\(=x^2\left[x^2+2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)
\(=x^2\cdot\left(x+\frac{1}{2}\right)^2\)
\(=\left(x^2+\frac{1}{2}x\right)^2\)