\(\dfrac{27}{x}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 10 2021

\(P=3\left(x+\dfrac{9}{x}\right)+\left(y+\dfrac{16}{y}\right)+\left(x+y\right)\)

\(P\ge3.2\sqrt{\dfrac{9x}{x}}+2\sqrt{\dfrac{16y}{y}}+7=33\)

\(P_{min}=33\) khi \(\left(x;y\right)=\left(3;4\right)\)

27 tháng 10 2024

đây là những món quà mà bn sẽ nhận đc: 1: áo quần 2: tiền 3: đc nhiều người yêu quý 4: may mắn cả 5: luôn vui vẻ trong cuộc sống 6: đc crush thích thầm 7: học giỏi 8: trở nên xinh đẹp phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người,

 

17 tháng 2 2018

Áp dụng bất đẳng thức AM - GM:

\(P=4x+3y+\dfrac{6}{x}+\dfrac{9}{2y}\)

\(=\left(\dfrac{3}{2}x+\dfrac{6}{x}\right)+\left(\dfrac{1}{2}y+\dfrac{9}{2y}\right)+\left(\dfrac{5}{2}x+\dfrac{5}{2}y\right)\)

\(\ge2\sqrt{\dfrac{3}{2}x\times\dfrac{6}{x}}+2\sqrt{\dfrac{1}{2}y\times\dfrac{9}{2y}}+\dfrac{5}{2}\times5\)

\(=\dfrac{43}{2}\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\dfrac{3}{2}x=\dfrac{6}{x}\\\dfrac{1}{2}y=\dfrac{9}{2y}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\left(\text{nhận}\right)\)

Vậy \(Min_P=\dfrac{43}{2}\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

17 tháng 6 2019

Tham khảo bài 8 trong link: Câu hỏi của Nguyễn Linh Chi - Toán lớp - Học toán với OnlineMath

26 tháng 3 2020

Tham khảo link này : https://olm.vn/hoi-dap/detail/223163065606.html

16 tháng 1 2020

\(S=x+y+\frac{3}{4x}+\frac{3}{4y}\)

\(=x+y+\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)

\(\ge x+y+\frac{3}{x+y}\)

\(=\left(x+y+\frac{16}{9\left(x+y\right)}\right)+\frac{11}{9\left(x+y\right)}\)

\(\ge\frac{4}{3}+\frac{11}{9\cdot\frac{4}{3}}=\frac{43}{12}\)

Tại \(x=y=\frac{2}{3}\)

AH
Akai Haruma
Giáo viên
26 tháng 1 2018

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\geq \frac{(x+y+z)^2}{x+y+y+z+z+x}\)

\(\Leftrightarrow A\geq \frac{x+y+z}{2}\)

Áp dụng BĐT AM-GM:

\(\left\{\begin{matrix} x+y\geq 2\sqrt{xy}\\ y+z\geq 2\sqrt{yz}\\ z+x\geq 2\sqrt{zx}\end{matrix}\right.\)

\(\Rightarrow 2(x+y+z)\geq 2(\sqrt{xy}+\sqrt{yz}+\sqrt{zx})=2\)

\(\Rightarrow x+y+z\geq 1\)

Do đó: \(A\geq \frac{x+y+z}{2}\geq \frac{1}{2}\)

Vậy \(A_{\min}=\frac{1}{2}\)

Dấu bằng xảy ra khi \(x=y=z=\frac{1}{3}\)

NV
25 tháng 1 2019

\(T=\dfrac{x}{\sqrt{y}}+\dfrac{y}{\sqrt{x}}=\dfrac{x^2}{x\sqrt{y}}+\dfrac{y^2}{y\sqrt{x}}\ge\dfrac{\left(x+y\right)^2}{x\sqrt{y}+y\sqrt{x}}=\dfrac{1}{x\sqrt{y}+y\sqrt{x}}\)

\(\Rightarrow T\ge\dfrac{1}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}\ge\dfrac{1}{\dfrac{\left(x+y\right)}{2}.\sqrt{2\left(x+y\right)}}=\sqrt{2}\)

\(\Rightarrow T_{min}=\sqrt{2}\) khi \(x=y=\dfrac{1}{2}\)

20 tháng 12 2017

1)Ta có:
\(A=\left(x^2-4x+4\right)+x+\dfrac{4}{x}+2012=\left(x-2\right)^2+x+\dfrac{4}{x}+2012\)Theo bđt cô-si ta có:
\(x+\dfrac{4}{x}\ge2\sqrt{\dfrac{x.4}{x}}=4\)
\(\left(x-2\right)^2\ge0\)
\(\Rightarrow A\ge0+4+2012\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left(x-2\right)^2=0\\x=\dfrac{4}{x}\end{matrix}\right.\Rightarrow x=2}\)

20 tháng 12 2017

2)Ta có:
\(B=\left(y^2-4y+4\right)+3y+\dfrac{12}{y}+2012=\left(y-2\right)^2+3y+\dfrac{12}{y}+2012\)Áp dụng bđt cô si ta có:
\(3y+\dfrac{12}{y}\ge2\sqrt{\dfrac{3y.12}{y}}=12\)
\(\left(y-2\right)^2\ge0\)
\(\Rightarrow B\ge0+12+2012=2024\)
Dấu "=" xảy ra khi
\(\left\{{}\begin{matrix}\left(y-2\right)^2=0\\3y=\dfrac{12}{y}\end{matrix}\right.\Rightarrow y=2}\)

9 tháng 5 2020

\(\sqrt{xy}\le\frac{x+y}{2}=\frac{2a}{2}=a\Rightarrow xy\le a^2\)

Ta có : \(A=\frac{x+y}{xy}\ge\frac{2a}{a^2}=\frac{a}{2}\)

Dấu "=" xảy ra khi x = y = a

vậy ....

11 tháng 9 2020

Áp dụng BĐT Cauchy-Schwarz:  \(\left(\frac{1}{2^2}+\frac{1}{\left(\sqrt{6}\right)^2}+\frac{1}{\left(\sqrt{3}\right)^2}\right)\left(\left(2x\right)^2+\left(y\sqrt{6}\right)^2+\left(z\sqrt{3}\right)^2\right)\ge\)

\(\left(\frac{1}{2}.2x+\frac{1}{\sqrt{6}}.y\sqrt{6}+\frac{1}{\sqrt{3}}.z\sqrt{3}\right)^2=\left(x+y+z\right)^2=3^2=9\)

\(\Rightarrow\left(\frac{1}{4}+\frac{1}{6}+\frac{1}{3}\right)\left(4x^2+6y^2+3z^2\right)\ge9\)

\(\Leftrightarrow\frac{3}{4}A\ge9\Leftrightarrow A\ge12\)

Dấu = xảy ra \(\Leftrightarrow\hept{\begin{cases}4x=6y=3z\\x+y+z=3\end{cases}\Leftrightarrow x=1,y=\frac{2}{3},z=\frac{4}{3}}\)

11 tháng 9 2020

Áp dụng bđt svacxo: \(\frac{x_1^2}{y_1}+\frac{x_2^2}{y_2}+\frac{x_3^2}{y_3}\ge\frac{\left(x_1+x_2+x_3\right)^2}{y_1+y_2+y_3}\)(Dấu "=" xảy ra <=> \(\frac{x_1}{y_1}=\frac{x_2}{y_2}=\frac{x_3}{y_3}\))

CM bđt đúng: Áp dụng bđt buniacopski

\(\left[\left(\frac{x_1}{\sqrt{y_1}}\right)^2+\left(\frac{x_2}{\sqrt{y_2}}\right)+\left(\frac{x_3}{\sqrt{y_3}}\right)\right]\left[\left(\sqrt{y_1}\right)^2+\left(\sqrt{y_2}\right)^2+\left(\sqrt{y}\right)^2\right]\)

\(\ge\left(\frac{x_1}{\sqrt{y_1}}+\sqrt{y_1}+\frac{x_2}{\sqrt{y_2}}+\frac{x_3}{\sqrt{y_3}}+\sqrt{y_2}+\frac{x_3}{y_3}\right)^2\)

<=> \(\left(\frac{x_1^2}{y_1}+\frac{x_2^2}{y_2}+\frac{x_3}{y_3}\right)\left(y_1+y_2+y_3\right)\) \(\ge\left(x_1+x_2+x_3\right)^2\)

Áp dụng bđt vaofA, ta có:

A = \(4x^2+6y^2+3z^2=\frac{x^2}{\frac{1}{4}}+\frac{y^2}{\frac{1}{6}}+\frac{z_2}{\frac{1}{3}}\ge\frac{\left(x+y+z\right)^2}{\frac{1}{4}+\frac{1}{6}+\frac{1}{3}}=\frac{9}{\frac{3}{4}}=12\)

 Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{x}{\frac{1}{4}}=\frac{y}{\frac{1}{6}}=\frac{z}{\frac{1}{3}}\\x+y+z=3\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=\frac{2}{3}\\z=\frac{4}{3}\end{cases}}\)

Vậy MinA = 12 <=> x = 1; y = 2/3; z = 4/3