K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2020

....Bạn viết rõ đề ra được không ? Mình nhìn đề không hiểu lắm 

24 tháng 11 2019

\(\left(\frac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}\le0\)(1)

Vì \(\left(\frac{1}{3}-2x\right)^{2018}\ge0\forall x\)\(\left(3y-x\right)^{2020}\ge0\forall x,y\)

\(\Rightarrow\left(\frac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}\ge0\forall x,y\)(2)

Từ (1), (2) \(\Rightarrow\left(\frac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}=0\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{3}-2x=0\\3y-x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{6}\\y=\frac{1}{18}\end{cases}}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}=6+18=24\left(đpcm\right)\)

14 tháng 9 2019

Katori Nomudo

Bạn đợi tí được không ? Mình đang nháp !

Đợi khoảng 45'p

14 tháng 9 2019

Ta có: \(\hept{\begin{cases}\left(3x-2y\right)^{2020}\ge0;\forall x,y,z\\\left(5y-3z\right)^{2000}\ge0;\forall x,y,z\\|2z-5x|\ge0;\forall x,y,z\end{cases}}\)

\(\Rightarrow\left(3x-2y\right)^{2020}+\left(5y-3z\right)^{2000}+|2z-5x|\ge0;\forall x,y,z\)

Do đó \(\left(3x-2y\right)^{2020}+\left(5y-3z\right)^{2000}+|2z-5x|=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(3x-2y\right)^{2020}=0\\\left(5y-3z\right)^{2000}=0\\|2z-5x|=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x=2y\\5y=3z\\2z=5x\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{3}=\frac{z}{5}\\\frac{z}{5}=\frac{x}{2}\end{cases}}\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có: 

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y-z}{2+3-5}=\frac{5}{0}\)( vô lý )

25 tháng 11 2019

\(\left|2x-27\right|^{2019}+\left|3y+10\right|^{2020}=0\)

Ta có:

\(\left\{{}\begin{matrix}\left|2x-27\right|^{2019}\ge0\\\left|3y+10\right|^{2020}\ge0\end{matrix}\right.\forall x,y.\)

\(\Rightarrow\left|2x-27\right|^{2019}+\left|3y+10\right|^{2020}=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left|2x-27\right|^{2019}=0\\\left|3y+10\right|^{2020}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|2x-27\right|=0\\\left|3y+10\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x-27=0\\3y+10=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2x=27\\3y=-10\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=27:2\\y=\left(-10\right):3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{27}{2}\\y=-\frac{10}{3}\end{matrix}\right.\)

Vậy \(\left(x;y\right)\in\left\{\frac{27}{2};-\frac{10}{3}\right\}.\)

Chúc bạn học tốt!

9 tháng 4 2021

Ta có: \(\hept{\begin{cases}\left(2x-5\right)^{2018}\ge0\left(\forall x\right)\\\left(3y+4\right)^{2020}\ge0\left(\forall y\right)\end{cases}}\Rightarrow\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\ge0\left(\forall x,y\right)\)

Mà \(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\le0\left(\forall x,y\right)\)

\(\Rightarrow\hept{\begin{cases}\left(2x-5\right)^{2018}=0\\\left(3y+4\right)^{2020}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x-5=0\\3y+4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{4}{3}\end{cases}}\)

Khi đó thay vào ta được: 

\(M+5\cdot\left(\frac{5}{2}\right)^2-2\cdot\frac{5}{2}\cdot\left(-\frac{4}{3}\right)=6\cdot\left(\frac{5}{2}\right)^2+9\cdot\frac{5}{2}\cdot\left(-\frac{4}{3}\right)-\left(-\frac{4}{3}\right)^2\)

\(\Leftrightarrow M+\frac{455}{12}=\frac{103}{18}\)

\(\Rightarrow M=-\frac{1159}{36}\)