K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 2 2020

\(P=\frac{a^3}{b}+\frac{b^3}{a}=\frac{a^4+b^4}{ab}\ge\frac{\left(a^2+b^2\right)^2}{2ab}\ge\frac{\left(a+b\right)^4}{8ab}\ge\frac{\left(a+b\right)^4}{2\left(a+b\right)^2}=\frac{1}{2}\)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

17 tháng 3 2019

\(P=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\\a+b+c=3\end{cases}}\Leftrightarrow a=b=c=1\)

Vậy.....

17 tháng 3 2019

Chết,nhìn không kĩ đề. :(

9 tháng 2 2021

Ta có : \(P=a^2+b^2+c^2\)

\(\Rightarrow P+2=a^2+b^2+c^2+2\left(ab+bc+ac\right)\)

\(\Rightarrow P+2=\left(a+b+c\right)^2\ge0\)

\(\Rightarrow P\ge-2\)

Vậy MinP = -2 tại a + b + c = 0 .

9 tháng 2 2021

Mik thấy a,b,c>0 \(\Rightarrow a+b+c>0\)

\(\Rightarrow2P-2=2a^2+2b^2+2c^2-2ab-2bc-2ca=\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) \(\Rightarrow2P\ge2\Rightarrow P\ge1\) Dấu bằng xảy ra \(\Leftrightarrow a=b=c=\dfrac{\sqrt{3}}{3}\) Vậy...

NV
10 tháng 1 2021

\(\left(a^3+b^3\right)\left(a+b\right)=ab\left(1-a\right)\left(1-b\right)\)

\(\Leftrightarrow\left(1-a\right)\left(1-b\right)=\left(\dfrac{a^2}{b}+\dfrac{b^2}{a}\right)\left(a+b\right)\ge\left(a+b\right)^2\ge4ab\)

\(\Rightarrow1+ab-4ab\ge a+b\ge2\sqrt{ab}\)

\(\Rightarrow3ab+2\sqrt{ab}-1\le0\)

\(\Leftrightarrow\left(\sqrt{ab}+1\right)\left(3\sqrt{ab}-1\right)\le0\)

\(\Leftrightarrow ab\le\dfrac{1}{9}\)

10 tháng 1 2021

Bạn chuyển vế kiểu gì vậy 

NV
17 tháng 1 2022

\(a^3+b^3+c^3-3abc=1\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=1\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=1\) (1)

Do \(a^2+b^2+c^2-ab-bc-ca>0\Rightarrow a+b+c>0\)

(1)\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=\dfrac{1}{a+b+c}\)

\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ca+\dfrac{1}{a+b+c}\)

\(\Leftrightarrow3a^2+3b^2+3c^2=\left(a+b+c\right)^2+\dfrac{1}{a+b+c}\ge3\)

\(\Rightarrow a^2+b^2+c^2\ge1\)

19 tháng 1 2022

Bạn có thể giải thích phần (1) <=> với cái đó được ko. Mình vẫn chưa hiểu mấy bước sau lắm

17 tháng 1 2021

Áp dụng bđt AM - GM:

\(P=3a+3b-1+\left[\left(a+1\right)+b+\dfrac{c^3}{b\left(a+1\right)}\right]\ge3a+3b-1+3c=3.5-1=14\).

Đẳng thức xảy ra khi a = 1; b = 2; c = 2.

Vậy Min P = 14 khi a = 1; b = 2; c = 2.