Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
\(2S=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
\(2S-S=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)+\left(1+\frac{1}{2}+...+\frac{1}{2^{10}}\right)\)
\(2S-S=S=2-\frac{1}{2^{10}}\)
\(S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
\(2S=2\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
\(2S=3+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\)
\(S=2S-S\)
\(S=3+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
\(S=3+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}-1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{10}}\)
\(S=2-\frac{1}{2^{10}}\)
Ta có :
\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)
\(2S=6+3+\frac{3}{2}+...+\frac{3}{2^8}\)
\(2S-S=\left(6+3+\frac{3}{2}+...+\frac{3}{2^8}\right)-\left(3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\right)\)
\(S=6-\frac{3}{2^9}\)
\(S=\frac{2^{10}.3-3}{2^9}\)
Vậy \(S=\frac{2^{10}.3-3}{2^9}\)
vận dụng 3S lên
xong tìm S nha bn ok
tại k có thời gian nên chỉ giúp thế thôi
\(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\)
=>\(2S=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\)
=>\(2S-S=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\right)\)
=>\(S=1-\frac{1}{2^9}=\frac{511}{512}\)
Vậy \(S=\frac{511}{512}\)
Ta có : \(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+......+\frac{1}{2^9}\)
\(\Rightarrow2S=1+\frac{1}{2}+\frac{1}{2^3}+....+\frac{1}{2^8}\)
\(\Rightarrow2S-S=1-\frac{1}{2^9}\)
\(\Leftrightarrow S=1-\frac{1}{2^9}\)
Bài 1 mik học xong quên hết òi (mấy bài kia là hok biết luôn :V)
\(A=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
\(A=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\)
\(A=2.\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{240}\right)\)
\(A=2.\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\right)\)
\(A=2.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(A=2.\left(\frac{1}{4}-\frac{1}{16}\right)\)
\(A=2.\frac{3}{16}\)
\(A=\frac{3}{8}\)
\(B=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{399}\)
\(B=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{19.21}\)
\(B=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\)
\(B=\frac{1}{3}-\frac{1}{21}\)
\(B=\frac{2}{7}\)
\(S=\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right).......\left(1-\frac{1}{10^2}\right)\)
\(=\frac{3}{4}.\frac{8}{9}............\frac{99}{100}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}...........\frac{9.11}{10.10}\)
\(=\frac{1.2.....9}{2.3.....10}.\frac{3.4.....11}{2.3.....10}\)
\(=\frac{1}{10}.\frac{11}{2}=\frac{11}{20}\)
S=1/5.6+1/10.9+1/15.12+...+1/3350.2013
=(1/5).(1/3).(1/1.2+1/2.3+1/3.4+...+1/670.671)
=(1/15). (1-1/2+1/2-1/3+...+1/670-1/671)
=(1/15). (1-1/671)
=1/15.670/671
=134/2013
\(S=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\)
\(2S=1+\frac{1}{2}+\frac{1}{2^2}...+\frac{1}{2^9}\)
\(2S-S=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)
\(=1-\frac{1}{2^{10}}=\frac{1023}{1024}\)
\(S=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{10}}\)
\(2S=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^9}\)
\(2S-S=\left(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^9}\right)\)\(-\left(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{10}}\right)\)
\(=1-\frac{1}{2^{10}}=\frac{1023}{1024}\)