Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 1+(2-3)+(5-4)+...+(98-99)-100
=1-1+1-1+...+1-1-100
=-100
Ta có: C=1 - 2 - 3 - 4 + 5 - 6 - 7 - 8 + 9 - 10 - 11 - 12 +... + 97 - 98 - 99 - 100
C= ( 1 - 2 - 3 - 4 ) + ( 5 - 6 - 7 - 8 ) + ( 9 - 10 - 11 - 12 ) + ... + ( 97 - 98 - 99 - 100 )
C= - 8 + - 16 + -24 + ... + -200
C= - ( 8 + 16 + 24 +... + 200 )
C= - \(\frac{\left(8+200\right).25}{2}\)= - 2600
nhớ ấn đúng cho mình nhé!
\(A=9\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)
\(A=9\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=9\left(1-\frac{1}{100}\right)\)
\(A=9\times\frac{99}{100}\)
\(A=\frac{891}{100}\) hoặc 8,91
A=9/1.2+9/2.3+9/3.4+.....+9/98.99+9/99.100
=9.(1/1.2+1/2.3+1/3.4+....+1/98.99+1/99.100
=9.(1/1-1/2+1/2-1/3+1/3-1/4+...+1/98-1/99+1/99-1/100)
=9.(1/1-1/100)
=9.99/100
=891/100
CHÚC BẠN HỌC TỐT!
\(A=9.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)
\(=9.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=9.\left(1-\frac{1}{100}\right)\)
\(=9.\frac{99}{100}\)
\(=\frac{891}{100}\)
Giải:
\(A=\dfrac{9}{1.2}+\dfrac{9}{2.3}+\dfrac{9}{3.4}+...+\dfrac{9}{98.99}+\dfrac{9}{99.100}\)
\(\Leftrightarrow A=9\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)
\(\Leftrightarrow A=9\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(\Leftrightarrow A=9\left(\dfrac{1}{1}-\dfrac{1}{100}\right)\)
\(\Leftrightarrow A=9.\dfrac{99}{100}\)
\(\Leftrightarrow A=\dfrac{891}{100}\)
Vậy ...
a/ A= 1-3+5-7+9-11+......+97-99
= -2+(-2)+(-2)+......+(-2)
= (-2).25=-50
b/B=-1-2-3-4-...-100
=-(1+2+3+4+...+100)
=-5050
c/C=1-2+3-4+5-6+......+99-100
= -1+(-1)+(-1)+.............+(-1)
=(-1).50=-50
d/D=1-2-3+4+5-6-7+8+9-....+94-95
= (1-2-3+4)+(5-6-7+8)+.......+(92-93-94+95)
= 0+0+0+...+0=0
\(\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{99.100}\)
=\(9.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
=\(9.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
=\(9.\left(\frac{1}{1}-\frac{1}{100}\right)\)
=\(9.\frac{99}{100}\)
=\(\frac{891}{100}\)