Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{14-x}{4-x}=\frac{4-x+10}{4-x}=\frac{4-x}{4-x}+\frac{10}{4-x}=1+\frac{10}{4-x}\)
De P dat gia tri nho nhat thi 10/4 - x nho nhat
=> 4 - x = -1
=> x = 5
tu thay vao
Ta có:\(\dfrac{14-x}{4-x}=\dfrac{10+4-x}{4-x}=\dfrac{10+\left(4-x\right)}{4-x}=1+\dfrac{10}{4-x}\)
Vì x∈Z,4∈Z=> 4-x∈Z
Để P đạt giá trị nhỏ nhất thì \(\dfrac{10}{4-x}\)phải đạt giá trị nhỏ nhất
=>4-x đạt giá trị lớn nhất
Và 4-x<0;4-x∈Z
Do đó 4-x=-1
=>x=4+1=5
Khi đó P=\(\dfrac{14-5}{4-5}\)=-9
Vậy P đạt giá trị nhỏ nhất bằng -9 khi x=5
\(P=\frac{14-x}{4-x}\)
\(=\frac{4-x+10}{4-x}=\frac{4-x}{4-x}+\frac{10}{4-x}\)
\(=1+\frac{10}{4-x}\)
Để P đạt giá trị lớn nhất thì \(\frac{10}{4-x}\) đạt giá trị lớn nhất \(\Leftrightarrow\) 4 - x đạt giá trị nguyên dương nhỏ nhất \(\Leftrightarrow4-x=1\Leftrightarrow x=3\)
Khi đó \(P=1+\frac{10}{4-3}=11\)
Vậy P đạt giá trị lớn nhất là 11 khi x = 3
Mình chả biết có đúng ko nữa nhưng bạn tham khảo nhé mình ko giỏi dạng toán này cho lắm
Ta có :
\(P=\frac{14-x}{4-x}=\frac{4-x+10}{4-x}=\frac{4-x}{4-x}+\frac{10}{4-x}=1+\frac{10}{4-x}\)
Để P đạt GTLN thì \(\frac{10}{4-x}\) phải đạt GTLN hay \(4-x>0\) và đạt GTNN
\(\Rightarrow\)\(4-x=1\)
\(\Rightarrow\)\(x=3\)
Suy ra : \(P=\frac{14-x}{4-x}=\frac{14-3}{4-3}=\frac{11}{1}=11\)
Vậy \(P_{max}=11\) khi \(x=3\)
Đúng thì thôi, sai thì đừng k sai nhé nhắn tin bảo sai là mình biết mình sẽ sửa :)
P=\(\frac{14-x}{4-x}\)=\(\frac{4-x+10}{4-x}\)=1+\(\frac{10}{4-x}\)
Để P có GTLN thì \(\frac{10}{4-x}\)phải có GTLN
suy ra 4-x phải là số dương nhỏ nhất (1)
Vì x nguyên suy ra 4-x nguyên (2)
từ (1) và (2) suy ra 4-x=1 suy ra GTLN của P là 1+10=11 <=> x=3
vậy..................
Ta có:(các số như 14-x/4-x đc vt dưới dạng p số nha)
14-x/4-x=10+4-x/4-x=10/4-x+4-x/4-x=(10/4-x)+1
Để (10/4-x)+1 đạtGTNN=>10/4-x đạt GTNN =>4-x đạt GTLN
mà -x<_(bé hơn hoặc bằng)0
=> 4-x<_4
Vì 4-x đạt GTLN =>4-x=4=>x=0
khi đó, thay vào biểu thức, ta có:
14-0/4-0=14/4=3,5
Vậy GTNN của P bằng 3,5<=>x=0
Biến đổi \(D=\frac{4-x+10}{4-x}=1+\frac{10}{4-x}\).
D lớn nhất khi và chỉ khi \(\frac{10}{4-x}\) lớn nhất.
Xét \(x>4\) thì \(\frac{10}{4-x}< 0.\left(1\right)\)
Xét \(x< 4\) thì \(\frac{10}{4-x}>0\). Phân số \(\frac{10}{4-x}\) có tử và mẫu đều dương, tử không đổi nên có giá trị lớn nhất khi mẫu nhỏ nhất. Mẫu \(4-x\) là số nguyên dương, nhỏ nhất khi \(4-x=1\) tức là \(x=3\). Khi đó
\(\frac{10}{4-x}=10\left(2\right)\)
So sánh \(\left(1\right)\) và \(\left(2\right)\), ta thấy \(\frac{10}{4-x}\) lớn nhất bằng 10. Vậy GTLN của D bằng 11 khi và chỉ khi \(x=3\)
ĐK: \(x\ne4\)
Để D lớn nhất thì 2D lớn nhất
Ta có: \(2D=\frac{2.\left(14-x\right)}{4-x}=\frac{28-2x}{4-x}=\frac{20}{4-x}+\frac{2.\left(4-x\right)}{4-x}=\frac{20}{4-x}+2\)
2D lớn nhất nên \(\frac{20}{4-x}\) lớn nhất hay 4 - x nhỏ nhất
+ Nếu x > 4 thì 4 - x < 0 => \(\frac{20}{4-x}\) < 0 (1)
+ Nếu x < 4 do 4 - x nhỏ nhất; x nguyên nên x = 3 => \(\frac{20}{4-x}=\frac{20}{4-3}=20\) (2)
So sánh (1) với (2) ta thấy (2) lớn hơn
Khi x = 3 thì \(D=\frac{14-3}{4-3}=\frac{11}{1}=11\)
Vậy GTNN của D là 11 khi x = 3
Ta có:
A = \(\frac{14-x}{4-x}\)
Để A có giá trị lớn nhất thì A > 0 => x < 4 và 4 - x bé nhất
=> x = {1; 2; 3}
Để 4 - x bé nhất thì x = 3
Giá trị đó là : \(\frac{14-3}{4-3}=\frac{11}{1}=11\)