Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: OA ⊥ OM (GT)
\(\Rightarrow\widehat{AOM}=90^0\)
Ta có: OB ⊥ ON (GT)
\(\Rightarrow\widehat{BON}=90^0\)
b)
Ta có: \(\left\{{}\begin{matrix}\widehat{AON}+\widehat{NOM}=90^0\left(=\widehat{AOM}\right)\\\widehat{BOM}+\widehat{NOM}=90^0\left(=\widehat{BON}\right)\end{matrix}\right.\)
=> Góc AON = Góc BOM

x A B C H 1 2 D 1 2
Xét \(\Delta DBC\) có:
\(\widehat{ADB}\) là góc ngoài của \(\Delta BCD\)
\(\Rightarrow\widehat{ADB}=\widehat{B_2}+\widehat{C}\)
\(\Rightarrow\widehat{C}=\widehat{ADB}-\widehat{B_2}=45^o-\frac{\widehat{B}}{2}\)
Xét \(\Delta ABC\) có
\(\widehat{A_1}\) là góc ngoài tại đỉnh A
\(\Rightarrow\widehat{A_1}=\widehat{B}+\widehat{C}=\widehat{B}+45^o-\frac{\widehat{B}}{2}\)
\(\Rightarrow\widehat{A_1}=45^o+\frac{\widehat{B}}{2}\) (1)
Xét \(\Delta HAC\) vuông tại H có
\(\widehat{A_2}=90^o-\widehat{C}=90^o-\left(45^o-\frac{\widehat{B}}{2}\right)=45^o+\frac{\widehat{B}}{2}\) (2)
Từ (1) và (2) suy ra \(\widehat{A_1}=\widehat{A_2}\)
Xét \(\Delta ABH\) có D là giao điểm của một tia phân giác ngoài với một tia phân giác trong không kề
=> tia HD phải là tia phân giác ngoài tại đỉnh H
=> \(\widehat{DHC}=45^o\)
=> HD // AB (vì có cặp góc đồng vị bằng nhau)

Đề sai nhiều quá
A A' B B' O C D 45
A) Ta có \(OC\perp OA=90^O\)
Mà OB' là tia phân giác góc A'OC
=> \(\widehat{A'OB'}=\frac{90}{2}=45^O\) \(=\widehat{AOB}\)
Mà OA là OA' nằm trên cùng 1 đường thẳng
=> AOB và A'OB' là 2 góc đối đỉnh
b) \(\widehat{DOA}\Leftrightarrow\widehat{AOD}=90^O\)

B C A M O
\(\Delta ABC\)cân tại A, \(\widehat{A}=80^o\)suy ra : \(\widehat{B}=\widehat{C}=50^o\)
Vẽ tam giác BCM đều ( M và A thuộc cùng một nửa mặt phẳng bờ BC )
\(\widehat{MCA}=60^o-50^o=10^o\)
\(\Delta AMB=\Delta AMC\)( c.c.c )
suy ra : \(\widehat{AMB}=\widehat{AMC}=60^o:2=30^o\)
\(\Delta OBC=\Delta AMC\)( g.c.g ) suy ra CO = CA do đó \(\Delta COA\)cân

a: góc BOC=180 độ-góc OBC-góc OCB
=180 độ-(góc ABC-góc ABO)-(góc ACB-góc ACO)
=180 độ-góc ABC-góc ACB+góc ABO+góc ACO
=góc A+góc ABO+góc ACO
b: góc BOC=góc A+90 độ-1/2*góc A=90 độ+1/2*góc A
=>góc OBC+góc OCB=90 độ-1/2*góc A
=>góc ABC/2+góc OCB=(180 độ-góc BAC)/2
=>góc OCB=góc ACB/2
=>CO là phân giác của góc ACB
Từ O kẻ đường thẳng Oz//Ax
Vì Ax//Oz:
\(\Rightarrow\widehat{O_1}+\widehat{A}=180^0\)
\(Hay:\widehat{O_1}+120^0=180^0\)
\(\Rightarrow\widehat{O_1}=180^0-120^0=60^0\)
Có: \(\widehat{O_1}+\widehat{O_2}=90^0\)
\(Hay:60^0+\widehat{O_2}=90^0\)
\(\Rightarrow\widehat{O_2}=90^0-60^0=30^0\)
Mà \(\widehat{O_2}\) và \(\widehat{B}\) là 2 góc ở vị trí SLT
\(\Rightarrow Oz//By\)
Vì \(Oz//Ax;Oz//By\Rightarrow Ax//By\left(dpcm\right)\)