Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x}{y}=\dfrac{9}{7}\)⇒\(\dfrac{x}{9}=\dfrac{y}{7}\)
\(\dfrac{y}{z}=\dfrac{7}{3}\)⇒\(\dfrac{y}{7}=\dfrac{z}{3}\)
⇒\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=\dfrac{15}{5}=3\)
⇒\(\left\{{}\begin{matrix}x=3.9=27\\y=3.7=21\\z=3.3=9\end{matrix}\right.\)
1. Ta có: \(\dfrac{x}{-7}=\dfrac{y}{4}\Rightarrow\dfrac{2x}{-14}=\dfrac{3y}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x-3y}{-14-12}=\dfrac{-78}{-26}=3\)
=> \(\left\{{}\begin{matrix}x=-21\\y=12\end{matrix}\right.\)
2. Ta có:
- \(\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\)
- \(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{y}{7}=\dfrac{z}{3}\)
=> \(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-y+z}{9-7+3}=\dfrac{-15}{5}=-3\)
=> \(\left\{{}\begin{matrix}x=-27\\y=-21\\z=-9\end{matrix}\right.\)
a) \(\dfrac{x}{y}=\dfrac{9}{7}\)⇒\(\dfrac{x}{9}=\dfrac{y}{7}\)
\(\dfrac{y}{z}=\dfrac{7}{3}\)⇒\(\dfrac{y}{7}=\dfrac{z}{3}\)
⇒\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=-\dfrac{15}{5}=-3\)
⇒\(\left\{{}\begin{matrix}x=-3.9=-27\\y=-3.7=-21\\z=-3.3=-9\end{matrix}\right.\)
c: Ta có: 5x=8y=20z
nên \(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{1}{8}}=\dfrac{z}{\dfrac{1}{20}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{1}{8}}=\dfrac{z}{\dfrac{1}{20}}=\dfrac{x-y-z}{\dfrac{1}{5}-\dfrac{1}{8}-\dfrac{1}{20}}=\dfrac{3}{\dfrac{1}{40}}=120\)
Do đó: x=24; y=15; z=6
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{z}{3}=\dfrac{-x+y-z}{-5+9-3}=\dfrac{11}{1}=11\)
Do đó: x=55; y=99; z=33
ADTCDTSBN ta có:
`x/5=y/9=z/3=(-x+y-z)/(-5+9-3)=11/1=11`
`=>x/5=11,y/9=11,z/3=11`
`=>x=55,y=99,z=33`
Áp dụng t/c dtsbn:
\(\dfrac{x}{13}=\dfrac{y}{7}=\dfrac{z}{5}=\dfrac{x-y-z}{13-7-5}=\dfrac{6}{1}=6\)
\(\Rightarrow\left\{{}\begin{matrix}x=13.6=78\\y=13.7=91\\z=13.5=65\end{matrix}\right.\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{11}=\dfrac{x+y+z}{5+7+11}=\dfrac{-46}{23}=-2\)
\(\Rightarrow\left\{{}\begin{matrix}x=\left(-2\right).5=-10\\y=\left(-2\right).7=-14\\z=\left(-2\right).11=-22\end{matrix}\right.\)
a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/3 = y/4 = x/3 + y/4 = 28/7 = 4
=> x = 4 × 3 = 12
=> y = 4 × 4 = 16
Vậy x = 12, y = 16
B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1
=> x = -1 × 2 = -2
=> y = -1 × -5 = 5
Vậy x = -2, y = 5
C) làm tương tự như bài a, b
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
x8=y12=z15=x+y−z8+12−15=105=2x8=y12=z15=x+y−z8+12−15=105=2
Do đó: x=16; y=24; z=30
7) vì \(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)và x-y+z=36
Nên theo tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)=\(\dfrac{x-y+z}{5-6+7}\)=\(\dfrac{36}{6}\)=6
\(\Rightarrow\)x=6.5=30
y=6.6=36
z=6.7=42
vậy x=30,y=36,z=42
áp dụng tccdts = nhau có:
\(\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{z}{7}=\dfrac{x-z}{5-7}=\dfrac{8}{-2}=-4\)
\(\Rightarrow\left\{{}\begin{matrix}x=-4\cdot5=-20\\y=-4\cdot9=-36\\z=-4\cdot7=-28\end{matrix}\right.\)
Vậy................
Ta có :
\(x-z=8\)
\(\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{z}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{z}{7}=\dfrac{x-z}{5-7}=\dfrac{8}{-2}=-4\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=-2\Leftrightarrow x=-20\\\dfrac{y}{9}=-2\Leftrightarrow y=-36\\\dfrac{z}{7}=-2\Leftrightarrow z=-28\end{matrix}\right.\)
Vậy ...