Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(2730\equiv0\left(mod7\right)\Rightarrow1730^{10}\equiv0\left(mod7\right)\left(1\right)\)
\(927309\equiv5\left(mod7\right)\)
\(\Rightarrow927309^{10^2}\equiv5^{10^2}\left(mod7\right)\)
Mà \(5^6\equiv1\left(mod7\right)\)
\(\Rightarrow5^{100}=5^{96}.5^4\equiv5^4\equiv2\left(mod7\right)\)
\(\Rightarrow927309^{10^2}\equiv2\left(mod7\right)\left(2\right)\)
Ta lại có: \(27309\equiv2\left(mod7\right)\)
\(\Rightarrow27309^{10^n}\equiv2^{10^n}\left(mod7\right)\)
Mà \(2^{10^n}=2.2^{10^n-1}\equiv2\left(mod7\right)\left(3\right)\)
Từ (1), (2), (3) ta có
\(A=\left(2730^{10}+927309^{10^2}+27309^{10^3}+...+27309^{10^{10}}\right)\equiv\left(0+2+2+...+2\right)\equiv18\equiv4\left(mod7\right)\)
Vậy số dư của A cho 7 là 4
bạn ơi cho mk hỏi đoạn này là sao ak ?
2.210^n-1 đồng dư với 2(mod7)
ta chú ý :
\(15^7\text{ chia 49 dư 1}\)
mà \(15^{15}=\left(14+1\right)^{15}\text{ chia 7 dư 1 nên :}15^{15}=7k+1\)
nên : \(15^{15^{15}}=15^{7k+1}=15\times15^{7k}\text{ chia 49 dư 15}\)
Ta có : 21000 = (22)500 = 4500
4500 có tận cùng bằng 6
=> 4500 : 5 dư 1
=> 21000 : 5 dư 1
a> \(\sqrt{25x}=35\)
⇔ \(5\sqrt{x}=35\)
⇔ \(\sqrt{x}=7\)
⇔ x=49
vậy x=49
b) \(4\sqrt{x}=\sqrt{48}\)
⇔ \(4\sqrt{x}=\sqrt{16}.\sqrt{3}\)
⇔ \(4\sqrt{x}=4\sqrt{3}\)
⇔ \(\sqrt{x}=\sqrt{3}\)
⇔ x=3
vậy x=3
\(\sqrt{144x}\le132\)
⇔ \(12\sqrt{x}\le132\)
⇔ \(\sqrt{x}\le11\)
⇔ x≤121
vậy x≤121
d \(3\sqrt{x}>\sqrt{10}\)
⇔ \(\sqrt{9x}>\sqrt{10}\)
⇔ 9x > 10
⇔ x > \(\dfrac{10}{9}\)
vậy x > \(\dfrac{10}{9}\)
gọi g(x) là thương phép chia
số dư có dạng ax+b
đặt x^99 + x^55 + x^11 + 7 = f(x)
ta có
f(x) = g(x) . (x^2 - 1) +ax+b
x = 1
=> f(1) = g(1) . (1^2 - 1) + a+b
11 = a+b
x=-1
=> f(-1) = g(-1) . (-1^2 - 1) -a+b
=> 3 = -a+b
ta có
a+b = 11
b-a = 3
=> 2a = 8
=> a=4
b=7
thương phép chia là 4a+7
o dư
ko dư thì trình bày đi