K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2017

Ta có : \(n^2+4n+5=\left(n+2\right)^2+1\)

Giả sử \(\left(n+2\right)^2+1\) \(⋮8\)

Ta có n lẻ => n+2 lẻ => (n+2)2 lẻ

Vì (n+2)2 là số chính phương lẻ nên chia 8 chỉ dư 1

<=> ( n+2)2 chia 8 dư 1

=> (n+2)2 + 1 chia 8 dư 2 => mâu thẫn với giả sử => điều giả sư sai => n2 + 4n + 5 không chia hết cho 8 ( đpcm)

29 tháng 7 2017

Thanks bạn

NV
18 tháng 9 2021

a. 

Đề bài sai, ví dụ \(n=1\) lẻ nhưng  \(1^2+4.1+8=13\) ko chia hết cho 8

b.

n lẻ \(\Rightarrow n=2k+1\)

\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n^2-1\right)\left(n+3\right)=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Do \(k\left(k+1\right)\left(k+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6

\(\Rightarrow8k\left(k+1\right)\left(k+2\right)\) chia hết cho 48

15 tháng 5 2021

phân tích n^2+4n+8=(n+1)(n+3)

vì là số tự nhiên lẻ nên đặt n=2k+1(k thuộc N)

=>n^2+4n+8=(n+1)(n+3)=(2k+2)(2k+4)

=4.(k+1)(k+2)

(k+1)(k+2) là tích 2 số tự nhiên liên tiếp chia hết cho 2

=>4.(k+1)(k+2)\(⋮\)8

 

15 tháng 5 2021

bài kia làm tương tự

23 tháng 10 2019

Câu hỏi của Lưu Thanh Vy - Toán lớp 8 - Học toán với OnlineMath

Em tham khaoe link trên.

1 tháng 1 2018

Ta có:

n2 + 4n + 5

= n2 - 1 + 4n + 6

= (n - 1).(n + 1) + 2.(2n + 3)

Do n lẻ nên n - 1 và n + 1 là 2 số chẵn liên tiếp

=> (n - 1).(n + 1) chia hết cho 8
Mà 2n + 3 lẻ => 2n + 3 không chia hết cho 4 => 2.(2n + 3) không chia hết cho 8

=> (n - 1).(n + 1) + 2.(2n + 3) không chia hết cho 8

=> n2 + 4n + 5 không chia hết cho 8

=> đpcm

Ủng hộ mk nha ^-^

 
 
17 tháng 7 2017

Giải:

Đặt \(n=2k+1\) (\(n\) lẻ) ta có:

\(n^2+4n+5=\left(2k+1\right)^2+4\left(2k+1\right)+5=\left(4k^2+4k+1\right)+\left(8k+4\right)+5\)

\(=\left(4k^2+4k\right)+\left(8k+8\right)+2=4k\left(k+1\right)+8\left(k+1\right)+2\)

\(k\left(k+1\right)⋮2\Leftrightarrow\hept{\begin{cases}4k\left(k+1\right)⋮8\\8\left(k+1\right)⋮8\end{cases}}\)\(2\) không chia hết cho \(8\)

Nên \(n^2+4n+5\) không chia hết cho \(8\) với mọi \(n\) là số lẻ (Đpcm)

28 tháng 7 2017

a) Gọi 3 số nguyên liên tiếp là \(x -1 ; x ; x + 1 .\)

Ta có : (x - 1)3 + x3 + (x + 1)3

= x3 - 1 - 3x(x - 1) + x3 + x3 + 1 + 3x(x + 1)

= 3x3 - 3x(x - 1 - x - 1)

= 3x3 + 6x

= 3x3 - 3x + 9x

\(= 3(x - 1)x(x + 1) +9x\)

\((x - 1)x(x + 1) \) chia hết cho 3 nên \(3(x - 1)x(x + 1)\) chia hết cho 9

Vì 9 chia hết cho 9 nên 9x chia hết cho 9

\(\Rightarrow\) \(3(x - 1)x(x + 1) + 9x\) chia hết cho 9

\(\RightarrowĐPCM\)

29 tháng 7 2017

Chứng minh: n^2 + 4n + 5 không chia hết cho 8 với mọi số nguyên ...

Đây nhé Taylor!!

Chúc bạn học tốt!!! Lần sau nhớ tra nha(đang lười làm khì khì)

26 tháng 9 2017

a) \(n^2+4n+3\)

Vì n là số lẻ nên n : 2 dư 1

Gọi n = 2k + 1

Thay n = 2k + 1 vào \(n^2+4n+3\)

Có : \(n^2+4n+3\) \(=n^2+3n+n+3\)

\(=n\left(n+1\right)+3\left(n+1\right)\)= ( n + 3 ) ( n + 1 ) (1)

Thay n = 2k + 1 vào (1)

=> (1) = \(\left(2k+1+3\right)\left(2k+1+1\right)\)

\(=\left(2k+4\right)\left(2k+2\right)\)

\(=2\left(k+2\right)2\left(k+1\right)=4\left(k+2\right)\left(k+1\right)\)

Xét: k + 2; k + 1 là hai số tự nhiên liên tiếp

=> \(\left(k+2\right)\left(k+1\right)\) \(⋮2\)

=> \(4\left(k+2\right)\left(k+1\right)⋮8\)

=> đpcm

26 tháng 9 2017

a) Ta có:

\(n^2+4n+3\)

\(=n^2+n+3n+3\)

\(=n\left(n+1\right)+3\left(n+1\right)\)

\(=\left(n+1\right)\left(n+3\right)\)

Mà n là số nguyên lẻ nên chia cho 2 dư 1 = 2k + 1 \(\left(k\in Z\right)\)

Do đó \(n^2+4n+3=\left(n+1\right)\left(n+3\right)=\left(2k+1+1\right)\left(2k+1+3\right)=\left(2k+2\right)\left(2k+4\right)=4\left(k+1\right)\left(k+2\right)\)

\(\left(k+1\right)\left(k+2\right)\) là tích 2 số nguyên liên tiếp nên chia hết cho 2.

Vậy \(n^3+4n+3=\left(n+1\right)\left(n+3\right)=4\left(k+1\right)\left(k+2\right)\) chia hết cho 4; chi hết cho 2.

=> \(n^3+4n+3⋮4.2=8\)

Vậy ...