Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)
\(\Rightarrow x=2k+1;y=3k+2;z=4k+3\)
Thay vào,ta được:
\(2\left(2k+1\right)+3\left(3k+2\right)-\left(4k+3\right)=50\)
\(\Leftrightarrow4k+2+9k+6-4k-3=50\)
\(\Leftrightarrow9k+5=50\)
\(\Leftrightarrow9k=45\)
\(\Leftrightarrow k=5\)
\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=\frac{5x-5}{10}=\frac{3y+9}{12}=\frac{4z-20}{24}\)
\(=\frac{5x-5-3y-9-4z+20}{10-12-24}=\frac{\left(5x-3y-4z\right)+\left(20-5-9\right)}{26}=\frac{46+6}{26}=2\)
\(\Rightarrow x=2\cdot2+1=5\)
\(y=4\cdot2-3=5\)
\(z=2\cdot6+5=17\)
Câu c tương tự như câu 1
https://olm.vn/hoi-dap/question/148595.html
vào đấy tham khảo nhé
^_^
c) \(4x=3y;7y=5z\)và\(2x+3y-z=186\)
\(4x=3y\Rightarrow\frac{x}{3}=\frac{y}{4}\Leftrightarrow\frac{x}{15}=\frac{x}{20}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)
Áp dụng tính chất Bắc Cầu
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2z+3y-z}{30+60-28}=\frac{186}{62}=3\)
Vậy x=45;y=60;z=84
a; \(\dfrac{x}{2}\) = \(\dfrac{y}{3}\) = \(\dfrac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}\) = \(\dfrac{y}{3}\) = \(\dfrac{z}{4}\) = \(\dfrac{x+y-z}{2+3-4}\) = \(\dfrac{5}{1}=5\)
\(x=5.2\) = 10; y = 3.5 = 15; z = 4.5 = 20
a) Đặt \(\frac{x}{-2}=\frac{y}{-3}=k\Rightarrow\hept{\begin{cases}x=-2k\\y=-3k\end{cases}}\)
Khi đó 4x - 3y = 9
<=> -8k + 9k = 9
=> k = 9
=> x = -18 ; y = -27
b) Ta có : \(2x=3y\Rightarrow\frac{2x}{6}=\frac{3y}{6}\Rightarrow\frac{x}{2}=\frac{y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{x+y}{2+3}=\frac{10}{5}=2\)
=> x = 4 ; y = 6
c) Đặt \(\frac{x}{3}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=3k\\y=4k\end{cases}}\)
Khi đó (3k)2 + (4k)2 = 100
<=> 9k2 + 16k2 = 100
=> 25k2 = 100
=> k2 = 4
=> k = \(\pm\)2
Khi k = 2 => x = 6 ; y = 8
Khi k = -2 => x = -6 ; y = -8
Vậy các cặp (x;y) thỏa mãn cần tìm là (6;8);(-6;-8)
d) Đặt \(\frac{x}{3}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=3k\\y=4k\end{cases}}\)
Khi đó x3 + y3 = 91
<=> (3k)3 + (4k)3 = 91
=> 27k3 + 64k3 = 91
=> 91k3 = 91
=> k3 = 1
=> k = 1
=> x = 3 ; y = 4
e) Đặt \(\frac{x}{5}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=5k\\y=4k\end{cases}}\)
Khi đó x2y = 100
<=> (5k)2.4k = 100
=> 25k2.4k = 100
=> 100k3 = 100
=> k = 1
=> x = 5 ; y = 4
a) \(\frac{2}{x-3}=\frac{5}{4}\)(ĐKXĐ : x khác 3)
=> \(2\cdot4=5\left(x-3\right)\)
=> \(8=5x-15\)
=> \(5x-15=8\)
=> \(5x=23\)=> x = 23/5 (tm)
b) \(\frac{x+1}{5}=\frac{4x-2}{3}\)
=> 3(x + 1) = 5(4x - 2)
=> 3x + 3 = 20x - 10
=> 3x + 3 - 20x + 10 = 0
=> 3x - 20x + 3 + 10 = 0
=> 3x - 20x = -13
=> -17x = -13
=> x = 13/17(tm)
2. a) Nếu đề như thế này : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và x - 2y + 2z = 10
=> \(\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}=\frac{x-2y+2z}{2-6+10}=\frac{10}{6}=\frac{5}{3}\)
=> x = 5/3.2 = 10/3 , y = 5/3.3 = 5, z = 5/3.5 = 25/3 ( nên sửa lại đề bài này nhá)
b) Bạn tự làm
c) \(\frac{x}{y}=\frac{3}{5}\)=> \(\frac{x}{3}=\frac{y}{5}\)=> \(\frac{2x}{6}=\frac{3y}{15}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{2x}{6}=\frac{3y}{15}=\frac{2x-3y}{6-15}=\frac{12}{-11}=-\frac{12}{11}\)
=> \(x=-\frac{12}{11}\cdot3=-\frac{36}{11},y=-\frac{12}{11}\cdot5=-\frac{60}{11}\)
d) Đặt x/3 = y/4 = k
=> x = 3k, y = 4k
Theo đề bài ta có => xy = 3k.4k = 12k2
=> 48 = 12k2
=> k2 = 48 : 12 = 4
=> k = 2 hoặc k = -2
Với k = 2 thì x = 3.2 = 6 , y = 4.2 = 8
Với k = -2 thì x = 3(-2) = -6 , y = 4(-2) = -8
Bài 1.
a) \(\frac{2}{x-3}=\frac{5}{4}\)( ĐK : x khác 3 )
<=> 2.4 = ( x - 3 ).5
<=> 8 = 5x - 15
<=> 8 + 15 = 5x
<=> 23 = 5x
<=> 23/5 = x ( tmđk )
b) \(\frac{x+1}{5}=\frac{4x-2}{3}\)
<=> ( x + 1 ).3 = 5( 4x - 2 )
<=> 3x + 3 = 20x - 10
<=> 3x - 20x = -10 - 3
<=> -17x = -13
<=> x = 13/17
Bài 2.
a) \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\\x-2y+2z=10\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}\\x-2y+2z=10\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}=\frac{x-2y+2z}{2-6+10}=\frac{10}{6}=\frac{5}{3}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\cdot2=\frac{10}{3}\\y=\frac{5}{3}\cdot3=5\\z=\frac{5}{3}\cdot5=\frac{25}{3}\end{cases}}\)
b) \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{5}\\\frac{z}{4}=\frac{y}{6}\\x-y+z=20\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}\times\frac{1}{6}=\frac{y}{5}\times\frac{1}{6}\\\frac{z}{4}\times\frac{1}{5}=\frac{y}{6}\times\frac{1}{5}\\x-y+z=20\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{12}=\frac{y}{30}\\\frac{z}{20}=\frac{y}{30}\\x-y+z=20\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{12}=\frac{y}{30}=\frac{z}{20}\\x-y+z=20\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{12}=\frac{y}{30}=\frac{z}{20}=\frac{x-y+z}{12-30+20}=\frac{20}{2}=10\)
\(\Rightarrow\hept{\begin{cases}x=10\cdot12=120\\y=10\cdot30=300\\z=10\cdot20=200\end{cases}}\)
c) \(\hept{\begin{cases}\frac{x}{y}=\frac{3}{5}\\2x-3y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{3}=\frac{y}{5}\\2x-3y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{2x}{6}=\frac{3y}{15}\\2x-3y=12\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{6}=\frac{3y}{15}=\frac{2x-3y}{6-15}=\frac{12}{-9}=-\frac{4}{3}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{4}{3}\cdot3=-4\\y=-\frac{4}{3}\cdot5=-\frac{20}{3}\end{cases}}\)
d) Đặt \(\frac{x}{3}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=3k\\y=4k\end{cases}}\)
xy = 48
<=> 3k.4k= 48
<=> 12k2 = 48
<=> k2 = 4
<=> k = ±2
+) Với k = 2 => \(\hept{\begin{cases}x=3\cdot2=6\\y=4\cdot2=8\end{cases}}\)
+) Với k = -2 => \(\hept{\begin{cases}x=3\cdot\left(-2\right)=-6\\y=4\cdot\left(-2\right)=-8\end{cases}}\)
a, \(\frac{x}{5}=\frac{y}{7}\)và x - y = -200
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{7}=\frac{x-y}{5-7}=\frac{-200}{-2}=100\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=100\\\frac{y}{7}=100\end{cases}\Rightarrow\hept{\begin{cases}x=500\\y=700\end{cases}}}\)
Vậy \(\hept{\begin{cases}x=500\\y=700\end{cases}}\)
b, \(\frac{x}{4}=\frac{y}{5}\)và x.y = 20
\(\frac{x}{4}=\frac{y}{5}\)
\(\Leftrightarrow\frac{x^2}{16}=\frac{xy}{20}=\frac{y^2}{25}\)
\(\Leftrightarrow\frac{x^2}{16}=\frac{y^2}{25}=\frac{20}{20}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{x^2}{16}=1\\\frac{y^2}{25}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=16\\y^2=25\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm4\\y=\pm5\end{cases}}\)
Vậy \(\left(x,y\right)\in\left\{\left(-4,-5\right);\left(4,5\right)\right\}\)
c, \(\frac{x}{2}=\frac{y}{3}\)và 4x - 3y = -2
\(\frac{x}{2}=\frac{y}{3}\)
\(\Leftrightarrow\frac{4x}{8}=\frac{3y}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{4x}{8}=\frac{3y}{9}=\frac{4x-3y}{8-9}=\frac{-2}{-1}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{4x}{8}=2\\\frac{3y}{9}=2\end{cases}}\Leftrightarrow\hept{\begin{cases}4x=16\\3y=18\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=6\end{cases}}\)
Vậy \(\hept{\begin{cases}x=4\\y=6\end{cases}}\)
Từ x:3=y:5 suy ra 4x:12=y:5 và 4x-y=14
Áp dụng tính chất của dãy tỉ số bằng nhau
x:3=y:5=4x-y:12-5=14:7=2
+)x:3=2 suy ra x=6
+)y:7=2 suy ra y=14
Vậy x=6;y=7