Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ Ox//AB
=>góc xOA=góc OAB=75 độ
=>góc xOC=30 độ=góc OCD
=>Ox//CD
=>AB//CD
a) Xét tam giác BAD
có: BA = BD
góc B = 60 độ
=> tam giác BAD đều ( định lí tam giác đều)
b) Xét tam giác ABC vuông tại A
có: góc B + góc C = 90 độ ( 2 góc phụ nhau)
thay số: 60 độ + góc C = 90 độ
góc C = 90 độ - 60 độ
góc C = 30 độ
ta có: góc ABI =góc CBI = góc B/2 = 60 độ/2 = 30 độ ( tính chất tia phân giác)
=> góc ABI = góc CBI = 30 độ
=> góc CBI =góc C ( = 30 độ)
=> tam giác IBC cân tại I ( định lí tam giác cân)
c) ta có: tam giác ABC vuông tại A
góc B = 60 độ
=> AB = 1/2.BC ( định lí)
mà D thuộc BC
AB = BD
=> BD =1/2.BC ( =AB)
=> D là trung điểm của BC ( định lí)
d) ta có: tam giác ABC vuông tại A
góc B = 60 độ
=> AB = 1/2.BC ( định lí)
thay số: 6 = 1/2.BC
BC = 6 : 1/2
=> BC = 12 cm
Xét tam giác ABC vuông tại A
có: \(AB^2+AC^2=BC^2\) ( py - ta - go)
thay số: 6^2 + AC^2 = 12^2
AC^2 = 12^2 - 6^2
AC^2 = 108
\(\Rightarrow AC\sqrt{108}\)cm
A B C D I 60
Kẻ thêm tia Oz trong \(\widehat{AOB}\) sao cho Oz // By(1)
Ta có: Oz // By (cách dựng) \(\Rightarrow\widehat{B}+\widehat{O_1}=180^0\)( tổng 2 góc trong cùng phía)
\(\Leftrightarrow\widehat{O_1}=180^0-105^0=75^0\)
Ta có: \(\widehat{O_1}+\widehat{O_2}=120^0\)
\(\Leftrightarrow75^0+\widehat{O_2}=120^0\)
\(\Leftrightarrow\widehat{O_2}=120^0-75^0=45^0\)
Ta có: \(\widehat{O_2}+\widehat{A}=45^0+135^0=180^0\)
mà 2 góc ở vị trí trong cùng phía
=> Oz//Ax(2)
Từ (1), (2) => Ax//By
a: Xét ΔBAD có BA=BD
nên ΔBAD cân tại B
mà góc ABD=60 độ
nên ΔBAD đều
b: Xét ΔIBC cógóc IBC=góc ICB
nên ΔIBC cân tại I
c: Xét ΔBAI và ΔBDI có
BA=BD
góc ABI=góc DBI
BI chung
Do đó: ΔBAI=ΔBDI
Suy ra: góc BDI=90 độ
=>DI vuông góc với BC
Ta có: ΔIBC cân tại I
mà ID là đường cao
nên D là trung điểm của BC
d: \(BC=AB:\sin C=12\left(cm\right)\)
\(AC=\sqrt{12^2-6^2}=6\sqrt{3}\left(cm\right)\)
cho hình vẽ nào cơ
bạn phải đăng lên chứ
A B C D a)
ta có D là giao điểm của cung tròn tâm B với cung tròn tâm C=>BD là bán kính của cung tròn tâm B và CD là bán kính của cung tròn tâm C
ta có: DB là bán kính của cung tròn tâm B mà AC cũng là bán kính của cung tròn tâm B=> AC=BD
CM tương tự ta có: CD=AB
xét \(\Delta ABC\) và \(\Delta DCB\) có:
BD=AC(cmt)
AB=DC(cmt)
BC(chung)
\(\Rightarrow\Delta ABC=\Delta DCB\left(c.c.c\right)\)
=>\(\widehat{BAC}=\widehat{BDC}=80^o\)
b)
theo câu a, ta có:
\(\Delta ABC=\Delta DCB\Rightarrow\widehat{ABC}=\widehat{BCD}\)
=>CD//AB(2 góc slt)
A B C D Nếu bạn xem ko đc hình thì xem hình này cũng được, khi nãy mk vẽ quên căn
ở câu a, mk ko quen cách diễn đạt lớp 9 cho lắm nên thông cảm nhé