Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: ( 4x + 1)(12x - 1)(3x + 2)(x+1) - 4
= [(4x+1)(3x+2)]. [(12x-1)(x+1)] - 4 = (12x2 +11x + 2)(12x2 + 11x - 1) - 4
Đặt a = 12x2 + 11x - 1. Thay vào biểu thức ta có:
(a+3).a - 4 = a2 + 3a - 4 =a2 + 4a - a - 4 = a(a+4) - (a+4)
= (a+4)(a-1)
=> (4x+1)(12x-1)(3x+2)(x+1) - 4 = (12x2 + 11x + 3)(12x2+11x - 2)
f(x) = (x+1)(x+3)(x+5)(x+7)+15
= (x+1)(x+7)(x+3)(x+5)+15
= (x2+7x+x+7)(x2+5x+3x+15)+15
= (x2+8x+7)(x2+8x+15)+15
Đặt X=x2+8x+11
f(x) = (X-4)(X+4)+15
= X2-16+15
= X2-12
= (X-1)(X+1)
=> f(x)= (x2+8x+11-1)(x2+8x+11+1)
f(x) = (x2+8x+10)(x2+8x+12)
Đến đây là vẫn còn phân tích được nhưng không dùng phương pháp đặt biến phụ:
f(x) = (x2+8x+10)(x2+8x+12)
= (x2+8x+10)[(x2+2x)+(6x+12)]
= (x2+8x+10)[x(x+2)+6(x+2)]
= (x+2)(x+6)(x2+8x+10)
A=(x+1)(x+3)(x+5)(x+7)+15=[(x+1)(x+7)][(x+3)(x+5)]+15=(x2+8x+7)(x2+8X+15)+15
Đặt t=x2+8x+7=> A=t2+8t+15=(t+4)2-1=(t+5)(t+3)=(x2+8x+12)(X2+8x+10)=(x+2)(x+6)(x2+8x+10)
vậy...........................................
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
15x( x- y) - 25x + 25y
= 15x(x-y) - 25 ( x - y)
= (15x - 25) ( x-y)
= 5 (3x - 5)(x-y)
a; x^8 + x^4 + 1
= x^8 + 2x^4 + 1 - x^4
= (x^4 + 1) - ( x^2)^2
= (x^4 - x^2 + 1)( x^4 + x^2 + 1)
= ( x^4 - x^2 + 1)(x^4 +2x^2 + 1 - x^2)
= ( x^4 - x^2 + 1)[(x^2 + 1)^2 - (x)^2 ]
= ( x^4 - x^2 + 1)( x^2 -x + 1)( x^2 +x + 1)
\(x^{10}+x^8+1=x^{10}+x^9+x^8-x^9-x^8-x^7+x^8+x^7+x^6-x^6-x^5-x^4+x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)
\(=\left(x^2+x+1\right)\left(x^8-x^7+x^6-x^4+x^3-x+1\right)\)
b)
1) \(\left(x^2+x+1\right)\left(x^2+x+2\right)-12=x^4+x^3+2x^2+x^3+x^2+2x+x^2+x+2-12\)
\(=x^4+2x^3+4x^2+3x-10=\left(x^4+2x^3\right)+\left(4x^2+8x\right)+\left(-5x-10\right)\)
\(=x^3.\left(x+2\right)+4x.\left(x+2\right)-5.\left(x+2\right)=\left(x+2\right)\left(x^3+4x-5\right)\)
\(=\left(x+2\right)\left(x^3-x^2+x^2-x+5x-5\right)=\left(x+2\right)\left(x-1\right)\left(x^2+x+5\right)\)
2) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=\left[\left(x+2\right)\left(x+5\right)\right].\left[\left(x+3\right)\left(x+4\right)\right]-24\)
\(=\left(x^2+7x+10\right).\left(x^2+7x+12\right)-24\)
Đặt \(a=x^2+7x+10\) thì ta có :\(a.\left(a+2\right)-24=a^2+2a-24=\left(a^2+2a+1\right)-25=\left(a+1\right)^2-5^2\)
\(=\left(a+1+5\right)\left(a+1-5\right)=\left(a+6\right)\left(a-4\right)\)
Thay a , ta có :
\(\left(x^2+7x+10+6\right)\left(x^2+7x+10-4\right)=\left(x^2+7x+16\right).\left(x^2+x+6x+6\right)\)
\(=\left(x^2+7x+16\right)\left(x+1\right)\left(x+6\right)\)
a)\(x^8+x^4+1\)
\(=\left(x^8+2x^4+1\right)-x^4\)
\(=\left(x^4+1\right)^2-x^4\)
\(=\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)\)
\(=\left(x^4-x^2+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)\)
b)\(x^{10}+x^5+1\)
\(=\left(x^{10}+x^9+x^8\right)-\left(x^9+x^8+x^7\right)+\left(x^7+x^6+x^5\right)-\left(x^6+x^5+x^4\right)+\left(x^5+x^4+x^3\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\)
\(=x^8\left(x^2+x+1\right)-x^7\left(x^2+x+1\right)+x^5\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^8-x^7+x^5-x^4+x^3-x+1\right)\)
a) \(x^8+x^4+1\)
= \(x^8+2x^4-x^4+1\)
= \(\left(x^4+1\right)^2-x^4\)
= \(\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)\)
= \(\left(x^4-x^2+1\right)\left(x^4+2x^2-x^2+1\right)\)
= \(\left(x^4-x^2+1\right)\left[\left(x^2+1\right)^2-x^2\right]\)
= \(\left(x^4-x^2+1\right)\left(x^2+1-x^2\right)\left(x^2+1+x^2\right)\)
= \(\left(x^4-x^2+1\right)\left(2x^2+1\right)\)
b) \(x^{10}+x^5+1\)
= ( x10+x9+x8) - (x9+x8+x7) + (x7+x6+x5) - (x6+x5+x4) + (x5+x4+x3) - (x3+x2+x) + (x2+x+1)
= (x2+x+1)(x8 - x7+x5-x4+x3-x+1)