Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\left(a\right)\Leftrightarrow\dfrac{x+1}{x-1}\le0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1\ge0\\x-1< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x+1\le0\\x-1\ge0\end{matrix}\right.\end{matrix}\right.\)
(I) \(\Rightarrow\left\{{}\begin{matrix}x\ge-1\\x< 1\end{matrix}\right.\) \(\Rightarrow-1\le x< 1\)
(II)\(\Rightarrow\left\{{}\begin{matrix}x\le-1\\x>1\end{matrix}\right.\) vô nghiệm
Kết luận ;\(-1\le x< 1\)
\(\left(b\right)\Leftrightarrow\dfrac{2x+3}{5x-2}\ge0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x+3\ge0\\5x-2>0\end{matrix}\right.\\\left\{{}\begin{matrix}2x+3\le0\\5x-2< 0\end{matrix}\right.\end{matrix}\right.\)
(I)\(\Rightarrow x\le-\dfrac{3}{2}\)
(II)\(\Rightarrow x>\dfrac{2}{5}\)
Kết luận nghiệm \(\left[{}\begin{matrix}x\le-\dfrac{3}{2}\\x>\dfrac{2}{5}\end{matrix}\right.\)
a: \(\Leftrightarrow4\left(4x-2\right)+12\left(-x+3\right)< =3\left(1-5x\right)\)
=>16x-8-12x+36<=3-15x
=>4x+28<=3-15x
=>19x<=-25
hay x<=-25/19
b: \(\Leftrightarrow6\left(x+4\right)+30\left(-x-5\right)>=10\left(x+3\right)-15\left(x-2\right)\)
=>6x+24-30x-150<=10x+30-15x+30
=>-24x-126<=-5x+60
=>-19x<=186
hay x>=-186/19
\(a,\dfrac{4x-2}{3}-x+3\le\dfrac{1-5x}{4}\\ \Leftrightarrow\dfrac{4\left(4x-2\right)}{12}-\dfrac{12\left(x-3\right)}{12}\le\dfrac{3\left(1-5x\right)}{12}\\ \Leftrightarrow16x-8-12x+36\le3-15x\\ \Leftrightarrow4x+28\le3-15x\\ \Leftrightarrow19x+25\le0\\ \Leftrightarrow x\le-\dfrac{25}{19}\)
\(b,\dfrac{x+4}{5}-x-5\ge\dfrac{x+3}{3}-\dfrac{x-2}{2}\\ \Leftrightarrow\dfrac{6\left(x+4\right)}{30}-\dfrac{30\left(x+5\right)}{30}\ge\dfrac{10\left(x+3\right)}{30}-\dfrac{15\left(x-2\right)}{30}\\ \Leftrightarrow6x+24-30x-150\ge10x+30-15x+30\\ \Leftrightarrow-24x-126\ge-5x+60\\ \Leftrightarrow19x+186\le0\\ \Leftrightarrow x\le-\dfrac{186}{19}\)
\(\text{a) }\dfrac{5x^2-3x}{5}+\dfrac{3x+1}{4}< \dfrac{x\left(2x+1\right)}{2}-\dfrac{3}{2}\\ \Leftrightarrow4\left(5x^2-3x\right)+5\left(3x+1\right)< 10x\left(2x+1\right)-15\\ \Leftrightarrow20x^2-12x+15x+5< 20x^2+10x-15\\ \Leftrightarrow20x^2+3x-20x^2-10x< -15-5\\ \Leftrightarrow-7x< -20\\ \Leftrightarrow x>\dfrac{20}{7}\)
Vậy bất phương trình có nghiệm \(x>\dfrac{20}{7}\)
\(\text{b) }\dfrac{5x-20}{3}-\dfrac{2x^2+x}{2}\ge\dfrac{x\left(1-3x\right)}{3}-\dfrac{5x}{4}\\ \Leftrightarrow4\left(5x-20\right)-6\left(2x^2+x\right)\ge4x\left(1-3x\right)-15x\\ \Leftrightarrow20x-80-12x^2-6x\ge4x-12x^2-15x\\ \Leftrightarrow-12x^2+14x+12x^2+11x\ge80\\ \Leftrightarrow25x\ge80\\ \Leftrightarrow x\ge\dfrac{16}{5}\)
Vậy bất phương trình có nghiệm \(x\ge\dfrac{16}{5}\)
\(\text{c) }\left(x+3\right)^2\le x^2-7\\ \Leftrightarrow x^2+6x+9\le x^2-7\\ \Leftrightarrow x^2+6x-x^2\le-7-9\\ \Leftrightarrow6x\le-16\\ \Leftrightarrow x\le-\dfrac{8}{3}\)
Vậy bất phương trình có nghiệm \(x\le-\dfrac{8}{3}\)
a: \(\Leftrightarrow7\left(7-3x\right)+12\left(5x+2\right)=84\left(x+13\right)\)
\(\Leftrightarrow49-21x+60x+24=84x+1092\)
\(\Leftrightarrow39x-84x=1092-73\)
=>-45x=1019
hay x=-1019/45
b: \(\Leftrightarrow21\left(x+3\right)-14=4\left(5x+9\right)-7\left(7x-9\right)\)
=>21x+63-14=20x+36-49x+63
=>21x+49=-29x+99
=>50x=50
hay x=1
c: \(\Leftrightarrow7\left(2x+1\right)-3\left(5x+2\right)=21x+63\)
=>14x+7-15x-6-21x-63=0
=>-22x-64=0
hay x=-32/11
d: \(\Leftrightarrow35\left(2x-3\right)-15\left(2x+3\right)=21\left(4x+3\right)-17\cdot105\)
=>70x-105-30x-45=84x+63-1785
=>40x-150-84x+1722=0
=>-44x+1572=0
hay x=393/11
a: \(\Leftrightarrow4\left(5x^2-3\right)+5\left(3x-1\right)< 10x\left(2x+3\right)-100\)
\(\Leftrightarrow20x^2-12x+15x-5< 20x^2+30x-100\)
=>3x-5<=30x-100
=>30x-100>3x-5
=>27x>95
hay x>95/27
b: \(\Leftrightarrow4\left(5x-2\right)-6\left(2x^2-x\right)< 4x\left(1-3x\right)-15x\)
\(\Leftrightarrow20x-8-12x^2+6x< 4x-12x^2-15x\)
=>26x-8<-11x
=>37x<8
hay x<8/37
|x-9|=2x+5
Xét 3 TH
TH1: x>9 => x-9=2x+5 =>-9-5=x =>x=-14 (L)
TH2: x<9 => 9-x=2x+5 => 9-5=3x =>x=4/3(t/m)
TH3: x=9 =>0=23(L)
Vậy x= 4/3
Ta có:\(\dfrac{1-2x}{4}-2\le\dfrac{1-5x}{8}+x\\ \)
\(\dfrac{2-4x-16}{8}\le\dfrac{1-5x+8x}{8}\)
\(-4x-14\le1+3x\\ \Leftrightarrow7x+15\ge0\\ \Leftrightarrow x\ge-\dfrac{15}{7}\)
a)\(\dfrac{7x-1}{2}+2x=\dfrac{16-x}{3}\)
\(\dfrac{\left(7x-1\right).3}{2.3}+\dfrac{2x.6}{6}=\dfrac{\left(16-x\right)2}{3.2}\)
khử mẫu
=> (7x-1).3+12x=(16-x).2
=>21x-3+12x=-2x+32
=>21x-3+12x+2x-32=0
=>35x-35=0
b)\(\dfrac{x+1}{x-2}+\dfrac{x-1}{x+2}=\dfrac{2\left(x^2+2\right)}{x^2-4}\)
ĐKXĐ: x khác +-2
\(\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{2\left(x^2+2\right)}{\left(x-2\right)\left(x+2\right)}\)
khử mẫu
(x+1).(x+2)+(x-1)(x-2)=2x2+4
=>x2+x+2+x+2+x2-2x-x+2=2x2+4
=>x2+x+2+x+2+x2-2x-x+2-2x2-4=0
=>(x2+x2-2x2)+(x+x-2x-x)+(2+2+2-4)=0
=>-x+2=0
=>-x=-2
=>x=2(loại)
vậy pt vô nghiệm
a: \(\Leftrightarrow15\left(x-1\right)-2\left(7x+3\right)\le10\left(2x+1\right)+6\left(3-2x\right)\)
\(\Leftrightarrow15x-15-14x-6\le20x+10+18-12x\)
=>x-21<=8x+28
=>-7x<=49
hay x>=-7
b: \(\Leftrightarrow20\left(2x+1\right)-15\left(2x^2+3\right)< 10x\left(5-3x\right)-12\left(4x+1\right)\)
\(\Leftrightarrow40x+20-30x^2-45< 50x-30x^2-48x-12\)
=>40x-25<2x-12
=>38x<13
hay x<13/38
\(a,\dfrac{x-1}{2}-\dfrac{7x+3}{15}\le\dfrac{2x+1}{3}+\dfrac{3-2x}{5}\\ \Leftrightarrow\dfrac{15\left(x-1\right)}{30}-\dfrac{2\left(7x+3\right)}{30}\le\dfrac{10\left(2x+1\right)}{30}+\dfrac{6\left(3-2x\right)}{30}\\ \Leftrightarrow15x-15-14x-6\le20x+10+18-12x\\ \Leftrightarrow x-21\le8x+28\\ \Leftrightarrow7x+49\ge0\\ \Leftrightarrow x\ge-7\)
\(b,\dfrac{2x+1}{-3}-\dfrac{2x^2+3}{-4}>\dfrac{x\left(5-3x\right)}{-6}-\dfrac{4x+1}{-5}\\ \Leftrightarrow\dfrac{20\left(2x+1\right)}{-60}-\dfrac{15\left(2x^2+3\right)}{-60}>\dfrac{10x\left(5-3x\right)}{-60}-\dfrac{12\left(4x+1\right)}{-60}\\ \Leftrightarrow40x+20-30x^2-45>50x-30x^2-48x-12\\ \Leftrightarrow38x-13>0\\ \Leftrightarrow x>\dfrac{13}{38}\)
Ta có : \(\dfrac{3-7x}{1+x}\ge\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{3-7x}{1+x}-\dfrac{1}{2}\ge0\)
\(\Leftrightarrow\dfrac{2\left(3-7x\right)-\left(x+1\right)}{2\left(x+1\right)}\ge0\)
\(\Leftrightarrow\dfrac{5-15x}{2\left(x+1\right)}=\dfrac{5\left(3-x\right)}{2\left(x+1\right)}\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3-x\ge0\\x+1>0\end{matrix}\right.\\\left\{{}\begin{matrix}3-x\le0\\x+1< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\le3\\x>-1\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge3\\x< -1\end{matrix}\right.\end{matrix}\right.\)
Vậy suy ra tập nghiệm
b, (x+4)(5x+9)-x>4
\(\Leftrightarrow\)5x2+29x+36-x>4
\(\Leftrightarrow\)5x2+28x+36>4
\(\Leftrightarrow\)5x2+28x+32>0
\(\Leftrightarrow\)5(x2+\(\dfrac{28}{5}\)x+\(\dfrac{32}{5}\))>0
\(\Leftrightarrow\)x2+\(\dfrac{28}{5}\)x+\(\dfrac{32}{5}\)>0
\(\Leftrightarrow\)x2+2.\(\dfrac{14}{5}\)x+\(\dfrac{206}{25}\)+\(\dfrac{32}{5}\)-\(\dfrac{206}{25}\)>0
\(\Leftrightarrow\)(x+\(\dfrac{14}{5}\))2-\(\dfrac{46}{25}\)>0
\(\Leftrightarrow\)(x+\(\dfrac{14-\sqrt{46}}{5}\))(x+\(\dfrac{14+\sqrt{46}}{5}\))>0
\(\Leftrightarrow\)2 trường hợp